Dr. Homi Bhabha State University The Institute of Science Mumbai

> SEM III and SEM IV Syllabus 2021-22

MSc. Organic Chemistry

Dr.HomiBhabha State University, Mumbai

Proposed Draft Syllabus for M.Sc. Organic Chemistry

Choice Based Credit System

(To be implemented from the academic year (2020-2021)

Image: Non-Section Section Sectin Sectin Section Section Section Section Section Section Sectio		M.Sc. Semes	ster III Organic Chemistry	
Sr.No. Course Contents (Topics and subtopics) B 1 Unit 1: Name reactions with mechanism and application 11 1.1 Mukaiyama esterification, Mitsunobu reaction, Baylis Hillman reaction, Suzuki 7 1.2 Multicomponent reactions: Strecker synthesis, Hantszch pyridine synthesis, Biginelli synthesis, Multicomponent reactions using alkyl isocyanides: Passerini and Ugi-4-component synthesis. 2 1.3 Domino/cascade reactions: Introduction with one example. 2 2.1 Protection-deprotection, umpolung and electro-organic chemistry 12 2.1 Protection and deprotection of the following functional groups: hydroxyl, scaboyl, mino and carboxyl with applications. 5 2.2 Concept of umpolung, generation of acyl anion equivalent using 1,3-dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro compounds and vinylated ethers. 5 2.3 Electro-organic chemistry: Introduction, electrode potential, cell parameters, electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. 12 3.1 Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthet	1		Course Title: Synthetic Organic Chemistry I	
Image: Number Num Number Number Number Number Number Number Number Nu		Course Credit: 4	Total contact hours: 60 Hrs	
 Mukaiyama esterification, Mitsunobu reaction, Baylis Hillman reaction, Suzuki coupling, Wacker process, Heck reaction, Sonogashira reaction. Multicomponent reactions: Strecker synthesis, Hantszch pyridine synthesis, Biginelli synthesis, Multicomponent reactions using alkyl isocyanides: Passerini and Ugi-4-component synthesis. Domino/cascade reactions: Introduction with one example. Unit 2: Protection-deprotection, umpolung and electro-organic chemistry Protection and deprotection of the following functional groups: hydroxyl, carbonyl, amino and carboxyl with applications. Concept of umpolung, generation of acyl anion equivalent using 1,3-dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro compounds and vinylated ethers. Electro-organic chemistry: Introduction, electrode potential, cell parameters, electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Companison of reactivity of enamines and enolates. Synthetic reactions of enamines. Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, nicluding mechanism and stereochemistry. Wittig reaction, Wittig-Horner reaction. a C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of crabanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination, and ris modification, Bestmann-Ohira Reagent, Barton-Kellogg olefination, Steven's rearrangement. Unit 4: Metals	Sr.No.	Course Co	ntents (Topics and subtopics)	Reqd. hours.
coupling, Wacker process, Heck reaction, Sonogashira reaction. 1.2 Multicomponent reactions: Strecker synthesis, Hantszch pyridine synthesis, Biginelli synthesis, Multicomponent reactions using alkyl isocyanides: Passerini and Ugi-4-component synthesis. 6 1.3 Domino/cascade reactions: Introduction with one example. 2 Unit 2: Protection-deprotection, umpolung and electro-organic chemistry 11 2.1 Protection and deprotection of the following functional groups: hydroxyl, carbonyl, amino and carboxyl with applications. 5 2.2 Concept of umpolung, generation of acyl anion equivalent using 1,3- dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro compounds and vinylated ethers. 5 2.3 Electro-organic chemistry: Introduction, electrode potential, cell parameters, electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. 12 3.1 Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. 5 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus,sulfur and nitrogen ylides with carbonyl				15 Hrs
Biginelli synthesis, Multicomponent reactions using alkyl isocyanides: Passerini and Ugi-4-component synthesis. 1.3 Domino/cascade reactions: Introduction with one example. 2.1 Protection-deprotection, umpolung and electro-organic chemistry 2.1 Protection and deprotection of the following functional groups: hydroxyl, scarbonyl, amino and carboxyl with applications. 2.2 Concept of umpolung, generation of acyl anion equivalent using 1,3-dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro compounds and vinylated ethers. 2.3 Electro-organic chemistry: Introduction, electrode potential, cell parameters, electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. 11 3.1 Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. 5 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig-Horner reaction. 5 3.3 α C-H activation by nitro, sulfoxide, sulfone and phosphonate groups		coupling, Wacker process, He	ck reaction, Sonogashira reaction.	7 Hrs
Unit 2: Protection-deprotection, umpolung and electro-organic chemistry 14 2.1 Protection and deprotection of the following functional groups: hydroxyl, carbonyl, amino and carboxyl with applications. 5 2.2 Concept of umpolung, generation of acyl anion equivalent using 1,3-dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro compounds and vinylated ethers. 5 2.3 Electro-organic chemistry: Introduction, electrode potential, cell parameters, electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. 11 3.1 Methods of preparation of enamines: condensation of secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. 5 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig Horner reaction. 5 3.3 α C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination, Atvens's rearrangement. 1 4.1 Mercury in organic synthesis: oxymercurat	1.2	Biginelli synthesis, Multio	component reactions using alkyl isocyanides:	6 Hrs
2.1 Protection and deprotection of the following functional groups: hydroxyl, carbonyl, amino and carboxyl with applications. 5 2.2 Concept of umpolung, generation of acyl anion equivalent using 1,3-dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro compounds and vinylated ethers. 5 2.3 Electro-organic chemistry: Introduction, electrode potential, cell parameters, electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. 11 3.1 Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines. 11 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig-Horner reaction. 5 3.3 α C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination and its modification, Bestmann-Ohira Reagent, Barton-Kellogg olefination, Steven's rearrangement. 13 4.1 Mercury in organic synthesis: oxymercuration and demercuration of alkenes, mechanism and regiochemistry, solvomercuration, mercuration of alke	1.3			2 Hrs
carbonyl, amino and carboxyl with applications. 2.2 Concept of umpolung, generation of acyl anion equivalent using 1,3-dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro compounds and vinylated ethers. 5 2.3 Electro-organic chemistry: Introduction, electrode potential, cell parameters, electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. 11 3.1 Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. 5 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig-Horner reaction. 5 3.3 α C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination, and its modification, Bestmann-Ohira Reagent, Barton-Kellogg olefination, Steven's rearrangement. 12 4.1 Mercury in organic synthesis: oxymercuration and demecruration of alkenes, mechanism and regiochemistry, solvomercuration, mercuration of aromatics an				15 Hrs
dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro compounds and vinylated ethers. 2.3 Electro-organic chemistry: Introduction, electrode potential, cell parameters, electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. 14 3.1 Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. 5 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig-Horner reaction. 6 3.3 α C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination, Steven's rearrangement. 14 4.1 Mercury in organic synthesis: oxymercuration and demercuration of alkenes, and transformation of arg. synthesis to aryl halides. 14		carbonyl, amino and carboxyl	with applications.	5 Hrs
 electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, oxidation of alkylbenzenes. Unit 3: Enamines and Ylides Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig-Horner reaction. a C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination and its modification, Bestmann-Ohira Reagent, Barton-Kellogg olefination, Steven's rearrangement. Unit 4: Metals / Nonmetals in organic synthesis Mercury in organic synthesis: oxymercuration and demercuration of alkenes, mechanism and regiochemistry, solvomercuration, mercuration of aromatics and transformation of aryl- mercurials to aryl halides. 	2.2	Concept of umpolung, generation of acyl anion equivalent using 1,3- dithianes, methyl thiomethylsulfoxides, cyanide ions, cyanohydrin ethers, nitro		5 Hrs
Unit 3: Enamines and Ylides 14 3.1 Methods of preparation of enamines: condensation of secondary amine and aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. 4 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig-Horner reaction. 5 3.3 α C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination, Steven's rearrangement. 14 4.1 Mercury in organic synthesis: oxymercuration and demercuration of alkenes, mechanism and regiochemistry, solvomercuration, mercuration of aromatics and transformation of aryl- mercurials to aryl halides. 14	2.3	 electrolyte, working electrode, choice of solvents, supporting electrolytes. Cathodic reductions of alkyl halides, aldehydes, ketones, nitro compounds, olefins, arenes; electro-dimerizations. Anodic oxidation: Kolbe type reactions, 		5 Hrs
 aldehyde or ketone, reaction between alkynes and secondary amines. Comparison of reactivity of enamines and enolates. Synthetic reactions of enamines including asymmetric reactions of chiral enamines derived from chiral secondary amines. 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig- Horner reaction. 3.3 α C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination and its modification, Bestmann-Ohira Reagent, Barton-Kellogg olefination, Steven's rearrangement. Unit 4: Metals / Nonmetals in organic synthesis 4.1 Mercury in organic synthesis: oxymercuration and demercuration of alkenes, mechanism and regiochemistry, solvomercuration, mercuration of aromatics and transformation of aryl- mercurials to aryl halides. 		Unit 3: Enamines and Ylides	5	15 Hrs
 3.2 Phosphorus, Sulfur and Nitrogen Ylides: Preparation, structure and comparison of reactivity. Reactions of phosphorus, sulfur and nitrogen ylides with carbonyl compounds, including mechanism and stereochemistry. Wittig reaction, Wittig-Horner reaction. 3.3 α C-H activation by nitro, sulfoxide, sulfone and phosphonate groups: generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination, Steven's rearrangement. Unit 4: Metals / Nonmetals in organic synthesis 4.1 Mercury in organic synthesis: oxymercuration and demercuration of alkenes, mechanism and regiochemistry, solvomercuration, mercuration of aromatics and transformation of aryl-mercurials to aryl halides. 	3.1	aldehyde or ketone, reacti Comparison of reactivity of enamines including asymmet	on between alkynes and secondary amines. enamines and enolates. Synthetic reactions of	4 Hrs
generation of carbanions by strong bases (LDA/n-butyl lithium) and applications in C-C bond formation. Bamford-Stevens Reaction, Julia olefination and its modification, Bestmann-Ohira Reagent, Barton-Kellogg olefination, Steven's rearrangement. Unit 4: Metals / Nonmetals in organic synthesis 14 4.1 Mercury in organic synthesis: oxymercuration and demercuration of alkenes, mechanism and regiochemistry, solvomercuration, mercuration of aromatics and transformation of aryl- mercurials to aryl halides. 2	3.2	Phosphorus, Sulfur and Nitrog of reactivity. Reactions of pho compounds, including mechar	osphorus, sulfur and nitrogen ylides with carbonyl	5 Hrs
4.1 Mercury in organic synthesis: oxymercuration and demercuration of alkenes, mechanism and regiochemistry, solvomercuration, mercuration of aromatics and transformation of aryl- mercurials to aryl halides.	3.3	generation of carbanions applications in C-C bond olefination and its modifica olefination, Steven's rearrange	by strong bases (LDA/n-butyl lithium) and formation. Bamford-Stevens Reaction, Julia tion, Bestmann-Ohira Reagent, Barton-Kellogg ement.	6 Hrs
mechanism and regiochemistry, solvomercuration, mercuration of aromatics and transformation of aryl- mercurials to aryl halides.	4.1			15 Hrs
	4.1	mechanism and regiochemist	ry, solvomercuration, mercuration of aromatics	2 Hrs
4.2 Organoboron compounds: applications of organo-boranes, generation of 3	4.2			3 Hrs

	diboranes, hydroboration of alkenes and alkynes: mechanism, regiochemistry,	
	stereochemistry, asymmetric hydroboration using chiral boron reagents and functional group reduction by diborona	
1.2	functional group reduction by diborane.	3 Hrs
4.3	Organosilicons: Important features of silicon governing the reactivity of C-Si	3 Hrs
	compounds: preparation and important bond forming reactions of alkyl silanes,	
4.4	alkenylsilanes, aryl silanes and allylsilanes. β -silylcations as intermediates.	A 11
4.4	Silylenol ethers as enolate precursors, iodotrimethylsilane in organic synthesis.	2 Hrs
4.5	Organotin compounds: preparation of alkenyl and allyl tin compounds and their	3 Hrs
16	applications in C-C bond formation.	3 II
4.6	Selenium in organic synthesis: Preparation of selenols/selenoxide, selenoxide	2 Hrs
	elimination to create unsaturation, selenoxide and selenoacetals as α - C-H	
	activating groups.	
	Suggested Readings:	
	1. Advanced Organic Chemistry, Part A and Part B: Reaction and	
	Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition,	
	Springer Verlag	
	2. Modern Methods of Organic Synthesis, 4th Edition, W.	
	Carruthers and Iain Coldham, Cambridge University Press,	
	2004.	
	3. Organic Chemistry, ClaydenGreeves Warren and Wothers,	
	Oxford Press (2001).	
	4. Moder Organic Synthesis: An Introduction, G.S. Zweifel and	
	M.H. Nantz, W.H. Freeman and Company, (2007).	
	5. Advanced Organic Chemistry: Reaction Mechanism, R.	
	Bruckner, Academic Press (2002).	
	6. Principles of Organic Synthesis, R.O.C. Norman & J. M.	
	Coxon, 3rd Edn., Nelson Thornes	
	7. Organic Chemistry,7thEdn, R.T.Morrison, R. N. Boyd, & S. K.	
	Bhattacharjee, Pearson	
	8. Strategic Applications of Name Reactions in Organic	
	Synthesis, L. Kurti& B. Czako (2005), Elsevier Academic Press	
	9. Advanced Organic Chemistry: Reactions & Mechanisms, 2nd	
	Edn., B. Miller & R. Prasad, Pearson	
	10. Organic reactions and their mechanisms, 3rd revisededition,	
	P.S. Kalsi, New Age International Publishers	
	11. Organic Synthesis: The Disconnection Approach, Stuart	
	Warren, John Wiley & Sons, 2004	
	12. Name Reactions and Reagents in Organic Synthesis, 2nd Edn.,	
	Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr.,	
	Wiley-Interscience	
	13. Name Reactions, Jie Jack Lie, 3rd Edn., Springer	
	14. Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn., Marcel	
	Dekker.	

Eg.MSCHCC305T; MS (Masters) CH(Chemistry) CC (Core Course)305(SEM III) T (Theory)

2	CourseCode: MSCHCC306T	Course Title: Theoretical Organic Chemistry	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr.No.	Course Contents (Topics and su	lbtopics)	
	Unit 1: Physical Organic Chemistry		
1.1	Structural effects and reactivity: Linear free energy relationship (LFER) in determination of organic reaction mechanism, The Hammett equation, substituent constants, theories of substituent effects, interpretation of σ -values, reaction constants ρ , Yukawa-Tsuno equation.		
1.2	correlations, Inductive substituent parameters Es and β . Solvent effe	tions from Hammett equation. Dual parameter t constants. The Taft model, σI and σR scales, steric cts, Okamoto-Brown equation, Swain-Scott equation, Grunwald-Winstein equation, Dimroth's ET	
	Unit 2: Organic reaction mecha	nisms	
2.1		ethods of generation, structure, stability and important nitrenes, carbenes, arynes and ketenes.	
2.2	Neighbouring group participation NGP by unshared/ lone pair electr reference to bornyl and norbornyl Role of FMOs in organic reactivity and nucleophiles, ambident nucle	: Mechanism and effects of anchimericassistance, rons, π -electrons, aromatic rings, σ -bonds with special systems (formation of non-classical carbocation) ty: Reactions involving hard and soft electrophiles ophiles, ambident electrophiles, the α effect.	
2.3	Pericyclic reactions: Classification of pericyclic reactions; thermal and photochemical reactions. Three approaches: Conservation of orbital symmetry - Correlation diagram, Frontier molecular orbital approach [FMO] and Aromatic transition state approach [Huckel and Mobius].		
3.1	Unit 3: Pericyclic reactions Cycloaddition reactions: $(4n+2)\pi$ cleatron systems Dials Alder reactions 1, 2		
5.1	Cycloaddition reactions: $4n\pi$ and $(4n+2)\pi$ electron systems. Diels-Alder reactions, 1, 3- Dipolar cycloaddition and cheletropic reactions, ene reaction, retro-Diels-Alder reaction, regioselectivity, periselectivity, site selectivity and effect of substituents in Diels-Alder reactions		
3.2	Electrocyclic reactions: Conrotatory and disrotatary motions, $4n\pi$ and $(4n+2)\pi$ electron systems.		
3.3	Sigmatropic rearrangements: H-shifts and C-shifts, supra and antarafacial migrations, retention and inversion of configurations. Cope (including oxy-Cope and aza-Cope) and Claisen rearrangements. Formation of Vitamin D from 7-dehydrocholestrol, synthesis of citral using pericyclic reaction.		
	Unit 4: : Photochemistry		
4.1	Principles of photochemistry: quantum yield, electronic states and transitions, selection rules, modes of dissipation of energy (Jablonski diagram), electronic energy transfer: photosensitization and quenching process.		
4.2	Photochemistry of carbonyl compounds: $\pi' \pi^*$, $n' \pi^*$ transitions, Norrish-I and Norrish-II cleavages, Paterno-Buchi reaction. Photoreduction, calculation of quantum yield, photochemistry of enones, photochemical rearrangements of α , β -unsaturated ketones and cyclohexadienones. Photo Fries rearrangement, Barton reaction.		
4.3	Photochemistry of olefins: cis-trans isomerizations, dimerizations, hydrogen abstraction, addition and Di- π - methane rearrangement including aza-di- π -methane. Photochemistry of arenes: 1, 2-, 1, 3- and 1, 4- additions. Singlet oxygen and photooxygenation reactions.		
	Wiley and sons.	ic Chemistry, Jerry March, sixth edition,2007, John Organic Chemistry, 6th edition, 2009,	

	Deter Sylves Degreen education New Delhi
2	Peter Sykes, Pearson education, New Delhi.
3.	Advanced Organic Chemistry: Reaction Mechanisms, R. Bruckner, Academic
	Press (2002).
4.	Mechanism and theory in Organic Chemistry, T. H. Lowry and
_	K.C. Richardson, Harper and Row.
5.	Organic Reaction Mechanism, 4th edition, V. K. Ahluvalia, R. K.
	rr, Narosa Publication.
0.	Reaction Mechanism in Organic Chemistry, S.M. Mukherji, S.P.
7	Singh, Macmillan Publishers, India.
7.	Organic Chemistry, Part A and B, Fifth edition, 2007, Francis A.
0	Carey and Richard J. Sundberg, Springer.
	Carbenes, Nitrenes and Arynes. Von T. L. Gilchrist, C. W. Rees.
	son and Sons Ltd., London 1969.
9.	Organic reactive intermediates, Samuel P. MacManus, Academic
10	Press. Organia Chamistry, I. Claudan, S. Warran, N. Craavas, P.
	Organic Chemistry, J. Clayden, S. Warren, N. Greeves, P.
	rs, 1st Edition, Oxford University Press (2001).
	Organic Chemistry, Seventh Edition, R.T. Morrison, R. N. Boyd
α S. K.	Bhattacharjee, Pearson. Advanced Organic Chemistry:
	Reactions & Mechanisms, second edition, B. Miller and R. Prasad, Pearson.
12	Organic reactions & their mechanisms, third revised edition, P.S.
	New Age International Publishers.
	Organic Chemistry: Structure and Function, P. Volhardt and N.
	, 5th Edition, 2012
	Organic Chemistry, W. G. Solomons, C. B. Fryhle, , 9th Edition,
17,	Wiley India Pvt. Ltd.,2009.
15	Pericyclic Reactions, S. Sankararaman, Wiley VCH, 2005.
	Advanced organic chemistry, Jagdamba Singh L. D. S. Yadav,
	Prakashan, 2011
U	Pericyclic reactions, Ian Fleming, Oxford university press, 1999.
	Pericyclic reactions-A mechanistic approach, S. M. Mukherji,
101	Macmillan Co. of India 1979.
19.	Organic chemistry, 8th edition, John McMurry
	Modern methods of Organic Synthesis, 4th Edition W. Carruthers
	and Iain Coldham, Cambridge University Press 2004
21.	Modern physical chemistry, Eric V Anslyn, Dennis A.
	Dougherty, University science books,2006
22.	Physical Organic Chemistry, N. S. Isaacs, ELBS/Longman
	Stereochemistry of Carbon Compounds: Principles and
	Applications, D, Nasipuri, 3rd edition, New Age International
	Ltd.
24.	Stereochemistry of Organic Compounds, Ernest L. Eliel and
	Samuel H. Wilen, Wiley-India edit
25.	Stereochemistry, P. S. Kalsi, 4th edition, New Age International
	Ltd
26.	Organic Stereochemistry, M. J. T. Robinson, Oxford University
	Press, New Delhi, India edition, 2005
	Bioorganic, Bioinorganic and Supramolecular chemistry, P.S.
	nd J.P. Kalsi. New Age International Publishers
	Supramolecular Chemistry; Concepts and Perspectives, J. M.
Lehn,V	
	Crown ethers and analogous compounds, M. Hiraoka, Elsevier,
	1992.

	30.	Large ring compounds, J.A.Semlyen, Wiley-VCH, 1997.
	31.	Fundamentals of Photochemistry, K. K. Rohtagi-Mukherji,
		Wiley- Eastern
	32.	Essentials of Molecular Photochemistry, A. Gilbert and J.
В	laggot	t, Blackwell Scientific Publication.
	33.	Molecular Photochemistry, N. J. Turro, W. A. Benjamin.
	34.	Introductory Photochemistry, A. Cox and T. Camp, McGraw-Hill
	35.	Photochemistry, R. P. Kundall and A. Gilbert, Thomson Nelson.
	36.	Organic Photochemistry, J. Coxon and B. Halton, Cambridge
		University Press.
	37.	Molecular Orbitals and Organic Chemical Reactions by Ian
		Fleming (Wiley – A john Wiley and Sons, Ltd., Publication)

Eg.MSCHCC306T; MS(Masters) CH (Chemistry) CC (Core Course)306(SEM III) T (Theory)

3	Course Code: MSCHDE305T	Course Title: Stereochemistry of Organic Compounds	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr.No.	Course Contents (Topics and subtopics)		Reqd. hours.
	Unit 1: Stereochemistry-I		15 Hrs
1.1	· · · · · · · · · · · · · · · · · · ·	nd stereospecific reactions. Enantioselective	7Hrs
	synthesis (chiral approach) reac catalytic hydrogenation via Sharplessepoxidation. Diels Ald determination of configuration formation)Shapes of five, six, a effects in medium sized rings, Cor	tions with hydride donors, hydroboration,	
1.2	Conformational analysis of mediu their unusual properties, I-strain, t	im rings: Eight and ten membered rings and ransannular reactions	4Hrs
1.3	Stereochemistry of fused ring hydrindanes, steroids, Allenes, Spir	and bridged ring compounds: decalins, ranes and Biphenyls andBredt's rule.	4Hrs
	Unit 2: Dynamic stereochemistry		15 Hrs
2.1	reactivity of cyclohexane derivation mechanism): electrophilic addition	mmett principle, Effect of conformation on tives in the following reactions (including ion, nucleophilic substitution, elimination, action of cyclohexanones and oxidation of	10 Hrs
2.2		Mechanism of racemisation, methods of equilibrium asymmetric transformation and	5 Hrs
	Unit 3: Stereochemistry- II		
3.1	Determination of enantiomer and method, enzymatic method, chro	diastereomer composition: Isotope dilution omatographic methods. Methods based on l derivatising agents (CDA), chiral solvating reagents (LSR).	15 Hrs 8 Hrs
3.2	Correlative methods for configuration quasi-racemate and NMR spectros	tional assignment: chemical, optical rotation, copy.	2 Hrs
3.3	Molecular dissymmetry and chin polarized light. Circular birefring	roptical properties: Linearly and circularly ence and circular dichroism. ORD and CD plications. The octant rule and the axial α -	5 Hrs
	Unit 4: Stereoselectivity		15Hrs
4.1	Stereochemical control in six membered rings. Reactions on small rings. Distereoselectivity: Prochirality. Additions to carbonyl groups. Stereoselective reactions of acyclic alkene. Single enantiomers from diastereoselective reactions. Use of chiral auxiliaries in diastereoselective reductions, asymmetric amplification.		7 Hrs
4.2	methods of asymmetric induction reactions. Asymmetric synthesis: carbon-carbon bonds. Asymmetric BINAPs and chiral oxazolines asy	is: Introduction, the chiral pool in Nature, – substrate, reagent and catalyst controlled Chiral auxiliaries. Asymmetric formation of ic aldol reactions. Use of chiral BINOLs, mmetric transformations.	8Hrs
	Suggested Readings: 1.E.L. Eliel : Stereochemistry of ca 2.D. Nasipuri : Stereochemistry of 3.P.S. Kalsi: Stereochemistry: conf	organic compounds	

4.Eliel, Allinger, Angyal and Morrison : Conformational analysis
5.Hallas: Organic stereochemistry
6.Mislow and Benjamin: Introduction to stereochemistry.
7.H. Kagan : Organic stereochemistry.
8. Carl Djerassi ; Optical rotatory dispersion.
9.P. Crabbe : Optical rotatory dispersion and C.D.

Eg.MSCHDE305T; MS (Masters) CH (Chemistry) ,DE(Discipline Specific) 305 (SEM III) T (Theory)

Course Code:MSCHDE306T	Course Title: Heterocyclic Chemistry	
Course Credit: 4	Total contact hours: 60 Hrs	
Course Cont	ents (Topics and subtopics)	Reqd. hours.
Unit 1: Heterocyclic compounds-I		15 Hrs
Heterocyclic compounds: Introduction, classification, common, systematic		7 Hrs
(Hantzsch- Widman) and replacement nomenclature of monocyclic (3-6		
membered) and bicyclic (5-6 Membered) fused heterocycles (up to three hetero		
atoms).		
Small ring heterocycles (3-4 membered): Introduction, nucleophilic ring		8 Hrs
· · · ·		15 Hrs
• •		
, , , ,		
Synthesis of chloroquine, papavarine, amlodipine, bromouidine, ranitidine, Vit-		
		15 Hrs
following heterocycles: pyridines, pyridine-N-oxide, pyridazines, pyrimidines,		
pyrazines, s-triazines, quinolines, isoquinolines, indoles, purines, oxazines,		
*		15 Hrs
•	· · · · · ·	
-		
66 6		
	y of neterocyclic compounds,	
8. Aromatic character and aromaticity by G.M.Badger		
		•
9. Non-benzenoid aromatic compo 10. Nonbenzenoid compounds by	•	
	Course Credit: 4 Course Contained Unit 1: Heterocyclic compound Heterocyclic compounds: Introdu (Hantzsch- Widman) and replac membered) and bicyclic (5-6 Ma atoms). Small ring heterocycles (3-4 mer opening reactions of oxiranes, az Unit 2:Heterocyclic Compound Reactivity and important methol following heterocycles: pyrazole benzimidazoles, benzoxazoles, b Synthesis of chloroquine, papava B6, tryptophan, thiamine, histidit Unit 3: Heterocyclic compound Reactivity, important methods of following heterocycles: pyridin pyrazines, s-triazines, quinolines coumarins. Unit 4: Heterocyclics with more Synthesis, reactivity, aromatic cha Heterocycles: 1,2,3-triazoies,1,2,4 oxadiazole, 1,2,5- oxadiazole, 1,2, thiadiazoles, 1,2,3-triazine, 1,2,4- importance of purines and pteridir Suggested Readings: 1. Heterocyclic Chemistry, T.Gilc 2. An introduction to the Chemistr R.M.Acheson 3. Heterocyclic Chemistry, J.A.Jou 6. Handbook of Heterocyclic Chemi	Course Credit: 4 Total contact hours: 60 Hrs Course Contents (Topics and subtopics) Unit 1: Heterocyclic compounds-I Heterocyclic compounds-I Heterocyclic compounds: Introduction, classification, common, systematic (Hantzsch- Widman) and replacement nomenclature of monocyclic (3-6 membered) and bicyclic (5-6 Membered) fused heterocycles (up to three hetero atoms). Small ring heterocycles (3-4 membered): Introduction, nucleophilic ring opening reactions of oxiranes, aziridines, oxetanes and azetidines. Unit 2:Heterocyclic Compounds -II Reactivity and important methods of synthesis and general reactions of the following heterocycles: pyrazoles, imidazoles, oxazoles, isoxazoles, thiazoles, benzomidazoles, benzoxazoles, benzothiazoles. Synthesis of chloroquine, papavarine, amlodipine, bromouidine, ranitidine, Vit-B6, tryptophan, thiamine, histidine. Unit 3: Heterocyclic compounds-III Reactivity, important methods of synthesis and general reactions of the following heterocycles: pyridines, pyridine-N-oxide, pyridazines, pyrimidines, pyrazines, s-triazines, quinolines, isoquinolines, indoles, purines, oxazines, coumarins. Unit 3: Heterocyclics with more than two hetero atoms Synthesis, reactivity, aromatic character and importance of the following Heterocycles: 1,2,3-triazoles, 1,2,4-triazoles, 1,2,4-oxadiazole, 1,3,4-oxadiazole, 1,2,5- ox

Eg. MSCHDE306T; MS (Masters) CH(Chemistry) DE (Discipline specific)306(SEM III)

	Course Code: Cour MSCHGE301T	se Title : Research Methodology	
	Course Credit:2 Total	l contact hours: 30 Hrs	
Sr. No.	Course Contents(Topics and subtopics) UNITI: Sources of Information		Reqd. hours.
			15Hrs
1.1	Primary, Secondary and Tertia	ary sources.	05Hrs
1.2	Journals:		05Hrs
	Journal abbreviations, abstract	s, current titles, reviews, monographs,	
	dictionaries, text- books, current	contents, Introduction to Chemical Abstracts	
	and Beilstein, Subject Index, Sub	ostance Index, Author Index, Formula Index,	
	and other Indices with examples.		
1.3			05Hrs
1.5	Digital:		001115
	Websources, E-journals, Journal ad	ccess, TO Calerts, Hotarticles, Citation Index,	
	Impact factor, H-index, E-con	sortium, UGC infonet, E-books, Internet	
	• •	ies, Blogs, preprint servers, Search engines,	
	Scirus, Google Scholar, Chem Indu	ustry, Wiki-databases, Chem Spider, Science	
	Direct, Sci Finder, Scopus.		
	UNIT II: Methods Of Scientific	Research and Writing Scientific Papers	15hrs
2.1	web, Internet resources for Chemi	ary Resources: The Internet and World wide stry, finding and citing published information.	5hrs
		theses : Directory of open Access Journals.	7 1
2.2	Reporting practical and project we organizing a poster display, giving	ork, Writing literature surveys and reviews, g an oral presentation.	5hrs
2.3	Writing Scientific Papers:		5hrs
	Justification for scientific contrib	utions, bibliography, description of methods, ation, style, publications of scientific work,	
	Plagiarism: Definition of Plagi strategies to a void plagiarism, cas	arism, Types of Plagiarism with examples, se studies (any one)	
	Course Outcome:		
	1) Students will earn to communication related to Science.		
	2) Awareness interminology relate	ed to Research.	
	3) Students will earn, to write and	1	
	RE	FERENCES	
		mes, D., Reed, R., Weyers, J., & Jones,	
		Chemistry,2 nd Ed., Prentice Hall, Harlow.	
	2. Hibbert, D. B. & Gooding, J. J.	J.(2006) Data Analysis for Chemistry	

	Oxford University Press.	
3.	Topping, J.,(1984) <i>Errors of Observation and their Treatment</i> 4 th Ed., Chapman Hill, London.	
4.	Harris, D. C. (2007) <i>Quantative Chemical Analysis</i> 6 th Ed., Freeman Chapters 3-5	
5.	Levie, R. De. (2001) <i>Howtouse Excelin Analytical Chemistry and in</i> general scientific data analysis Cambridge Universty Press.	
6.	Research methodology techniques and methods by C	

MSCHGE302T: MS(Masters), CH(Chemistry), AE(General Elective), 302(SEM III), T(Theory)

5	Course Code:	Course Title: Pharmaceutical Development and		
	MSCHAE301T	Management		
	Course Credit: 2	Total contact hours: 30Hrs		
Sr. No.	Course Contents (Topics & subtopics)		Reqd. hours	
	UNIT I		15 Hrs	
1.1	Understanding of	Pharmaceutical Industry: What drives the		
	pharmaceutical indust	ry, Subsections of Pharmaceutical industry		
1.2	The Pharmaceutical I	Products: Drug Development and the Marketing		
	ResearchInterface;Dive	ersification and Specialisation; Marketing Generic		
	Drugs; Non-prescriptio			
1.2	Competitive Practices	: Economic and Competitive Aspects of the		
	PharmaceuticalIndustr	у.		
	Advertising; Detailing a	and other forms of Promotion; Retail Competition –		
	The Community Level;	International Marketing.		
1.3	Validation Process: Sel	ectivity , Linearity, Accuracy, Precision		
			15 Hrs	
2.1	1 Six sigma in Pharmaceutical Manufacturing Industry			
	• How does Six Sigma work?			
	Six Sigma Customer Benefits			
	 Build quality in Pharmaceutical Manufacturing Process through Six 			
	Sigma			
	Introduction to Kaizen Concept			
2.2		-		
2.2		bD) : Why QbD, The characteristics of a successful		
		ble of Quality Risk Management in QbD.		
2.3		P and their regulations for analytical labs		
	Suggested readings			
1		rtical Chemistry, D. A. Skoog and D. M. West and F.		
	J. HollerHolt- Saunders			
2	2 Principles of Instrumental Analysis, D. A. Skoog, F. J. Holler and J.A.			
3	Niemann ,5Edition (1998)Instrumental Methods of Analysis, H. H. Willard, L. L. Merritt, Jr. J. A.			
5	Dean and F. A. Settle Jr 6 th Ed CBS (1986)			
4		lytical Chemistry, D. A. Skoog and D. M. West,		
	Saonders, College pub			
	Course Outcome	:		
1		ht of the management terms used in Pharma		
	industry.	č		
2	-	duced to Pharmaceutical Legislation		
1000	THAE 302T · MS(Masters) CH(Chemistry) AE(Ability Enhancement) 302(SEM III) T(Theory)			

MSCHAE302T: MS(Masters), CH(Chemistry), AE(Ability Enhancement), 302(SEM III), T(Theory)

M. Sc. Semester III Organic Chemistry Practicals		
Course Code: MSCHLB305P	Course Title: Separation of a ternary mixture using	
	micro-scale technique	
Course Credit: 2	Total contact hours: 60 Hrs	
Course Contents (Topics and subtopics)		
Separation of a ternary mixture of organic compounds and identification including derivative		
preparations using micro-scale technique		
1. Separation of a ternary mixture (S-S-S, S-S-L, S-L-L and L-L-L) (for solid mixture: water		
insoluble/ soluble including carbohydrates) based upon differences in the physical and the		
chemical properties of the components.		
2. Purification of the three components, measurement of their mass and determination of		
their physical constants.	-	
3 Calculation of percentage yield of the individual components (Identification of the		

- 3. Calculation of percentage yield of the individual components. (Identification of the components is not expected).
- 4. Preparation of derivatives (any one of separated compound).

(Minimum 8 experiments)

Course Code:MSCHLB305P	Course Title: Organic preparations (1.0 g scale)	
Course Credit: 2 Total contact hours: 60 Hrs		
Course Contents (Topics and subtopics)		

Single step organic preparation (1.0 g scale) involving purification by Steam distillation / Vacuum distillation or Column chromatography.

- 1. Preparation of acetanilide from aniline and acetic acid using Zn dust.
- 2. Preparation of 1-nitronaphthalene from naphthalene.
- 3. Preparation of acetyl ferrocene from ferrocene. (Purification by column chromatography)
- 4. Preparation of 3-nitroaniline from 1,3-dinitrobenzene. (Purification by column chromatography)
- 5. Preparation of benzyl alcohol from benzaldehyde. (Purification by vacuum distillation).
- 6. Preparation of methyl salicylate from salicylic acid. (Purification by vacuum distillation).
- 7. Preparation of 4-methylacetophenone from toluene. (Purification by vacuum distillation).
- 8. Preparation of phenyl acetate from phenol. (Purification by vacuum distillation)
- 9. Preparation of 2-chlorotoluene from o-toluidine. (Purification by steam distillation)
- 10. Preparation of 4-nitrophenol from phenol. (Purification by steam distillation/ column chromatography)
- 11. Preparation of fluorenone from fluorene. (Purification by column chromatography)
- 12. Preparation of dimethylphthalate from phthalic anhydride. (Purification by vacuum distillation)

(Minimum 8 experiments)

Learning points:

1. Students are expected to know

(i) the planning of synthesis, effect of reaction parameters including stoichiometry, and safety

aspects including MSDS

(ii) the possible mechanism, expected spectral data (IR and NMR) of the starting material and final product.

2. Students are expected to purify the product by Steam distillation / Vacuum distillation or Column chromatography, measure its mass or volume, check the purity by TLC, determine physical constant and calculate percentage yield.

MSCHLB305P: MS(Masters), CH(Chemistry), LB(Laboratory), 305(SEM III), P(Practical)

Course Co	ode:MSCHLB306P	Course Title: Isolation / Estimation of natural
0 0		products /Drugs
Course Cr		Total contact hours: 60 Hrs
Section A		ntents (Topics and subtopics)
	traction of clove oil from clov	acts(Minimum 4 experiments)
	straction of nicotine dipicrate f	
	stimation of glucose by Folin V	method using spectrophotometer.
	stimation of citral using hydrox	
	stimation of saponification val	
	: Estimation of drugs (Minim	
	stimation of penicillin by iodor	
		g uv-visible spectrophotometer.
	stimation of paracetamol by hy	
	1 2 .	n tablet using uv-visible spectrophotometer.
	stimation of diazepam by non-a	
	stimation of vitamin C by iodo	-
Course Co	ode:MSCHLB306P	Course Title: Techniques of purification and green
		methods of synthesis
Course Cr	redit: 2	Total contact hours: 60 Hrs
		ntents (Topics and subtopics)
	chniques of purification:	
	eam distillation	
2. Va	acuum distillation	
3. Co	olumn chromatography	
3. Co Set II: Gr	olumn chromatography reen methods of synthesis (mic	
3. Co Set II: Gr 1. Sy	olumn chromatography reen methods of synthesis (mic /nthesis of Schiff's base from a	aniline and p-anisaldehyde in the presence of lime juice
3. Co Set II: Gr 1. Sy 2. Sy	blumn chromatography reen methods of synthesis (mic nthesis of Schiff's base from a nthesis of coumarin by Knoev	
3. Co Set II: Gr 1. Sy 2. Sy in	olumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base.	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone	aniline and p-anisaldehyde in the presence of lime juice venagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea	blumn chromatography reen methods of synthesis (mic /nthesis of Schiff's base from a /nthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a	aniline and p-anisaldehyde in the presence of lime juice venagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone	aniline and p-anisaldehyde in the presence of lime juice venagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea	blumn chromatography reen methods of synthesis (mic /nthesis of Schiff's base from a /nthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a	aniline and p-anisaldehyde in the presence of lime juice venagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy Learning Set I: Teo	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an points : chniques of purification	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea. iline.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy Learning Set I: Teo 1. Stu	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an points : chniques of purification udents are expected to perform	aniline and p-anisaldehyde in the presence of lime juice venagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy Learning Set I: Teo 1. Stu of	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an points: chniques of purification udents are expected to perform the given substance.	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea. iline.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy Learning Set I: Tec 1. Stu of 2. Ch	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an points : chniques of purification udents are expected to perform the given substance. neck the purity of the purified of	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea. iline.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy Learning Set I: Teo 1. Stu of 2. Ch co	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an points: chniques of purification udents are expected to perform the given substance. neck the purity of the purified onstant.	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea. iline.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy Learning Set I: Teo 1. Stu of 2. Ch co Set II: G	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an points: chniques of purification udents are expected to perform the given substance. neck the purity of the purified on stant. reen methods of synthesis (Mi	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea. iline.
3. Co Set II: Gr 1. Sy 2. Sy in 3. Sy rea 4. Sy Learning Set I: Tec 1. Stuo of 2. Ch co Set II: G	blumn chromatography reen methods of synthesis (mic ynthesis of Schiff's base from a ynthesis of coumarin by Knoev presence of a base. ynthesis of dihydropyrimidone action between vanillin, ethyl a ynthesis of acetanilide from an points: chniques of purification udents are expected to perform the given substance. neck the purity of the purified on stant. reen methods of synthesis (Mi	aniline and p-anisaldehyde in the presence of lime juice renagel reaction using salicylaldehyde, and ethyl acetate es- Biginelli reaction: acid-catalyzedthree component acetoacetate and thiourea. iline.

the Department /institution at the time of the practical examination.

- 2. A candidate will not be allowed to appear for the practical examination unless he/she produces a certified journal or a certificate from the Head of the institution/department stating that the journal is lost and the candidate has performed the required number of experiments satisfactorily. The list of the experiments performed by the candidate should be attached with such certificate.
- **3.** Use of non-programmable calculator is allowed both at the theory and the practical examination.

Suggested Readings:

- Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis- V. K. Ahluwalia and RenuAggarwal, Universities Press India Ltd., 2000
- 2. Advanced Practical Organic Chemistry N. K. Vishnoi, Third Addition, Vikas Publishing House PVT Ltd
- 3. Systematic Laboratory Experiments in Organic Synthesis- A. Sethi, New Age International Publications
- 4. Systematic Identification of Organic compounds, 6th edition, R. L. Shriner, R. C. Fuson and D.Y. Curtin Wiley, New York.
- 5. Vogel's Textbook of Quantitative Analysis, revised, J. Bassett, R. C. Denney, G. H. Jeffery and J. Mendham, ELBS
- 6. Experiments and Techniques in Organic Chemistry, D. Pasto, C. Johnson and M. Miller, Prentice Hall
- 7. Macro-scale and Micro-scale Organic Experiments, K. L. Williamson, D. C. Heath.
- 8. Systematic Qualitative Organic Analysis, H. Middleton, Adward Arnold.
- 9. Handbook of Organic Analysis- Qualitative and Quantitative, H. Clark, Adward Arnold.
- Vogel's Textbook of Practical Organic Chemistry, Fifth edition,2008, B.S.Furniss, A. J.Hannaford, P. W. G. Smith, A. R. Tatchell, Pearson Education.
- 11. Laboratory Manual of Organic Chemistry, Fifth edition, R K Bansal, New Age Publishers.
- 12. Organic structures from spectra, L. D. Field, S. Sternhell, John R. Kalman, Wiley, 4th ed., 2011.

MSCHLB306P: MS(Masters), CH(Chemistry), LB(Laboratory), 306(SEM III), P(Practical)

Dr. HomiBhabha State University

The Institute of Science Mumbai

> SEM IV Syllabus 2021-2022

MSc. Organic Chemistry

	M.Sc. Seme	ster IV Organic Chemistry	
1	Course Code: MSCHCC405T	Course Title: Synthetic Organic Chemistry II	
	Course Credit: 4	Total contact hours: 60 Hrs.	
Sr.No.	Course Co	ontents (Topics and subtopics)	Reqd. hours.
	Unit 1: Designing organic S	ynthesis I	15Hrs.
1.1	convergent synthesis; Discon synthetic equivalents, c	ic analysis and synthetic planning: Linear and nection approach: An introduction to synthons, lisconnection approach, functional group tional group addition (FGA), functional group	9Hrs
1.2	disconnections (1,1; 1,2; 1,3 c	in organic synthesis, one and two group C-X lifunctionalized compounds), selective organic vity, regioselectivity, stereoselectivity,	6 Hrs
	Unit 2: Designing organic S		15 Hrs
2.1	yielding steps, and recognisat One group C-C Disconnection	ns: Alcohols (including stereoslectivity), carbonyls lkene synthesis, use of acetylenes and aliphatic	11 Hrs
2.2	Two group C-C Disconnectio compounds, Diels-Alder react carbonyl condensations, Mich	ns: 1,2- 1,3- 1,4- 1,5- and 1,6- difunctionalized tions, α, β-unsaturated compounds, control in ael addition and Robinson annelation.	4 Hrs
	Unit 3: Designing Organic S		15 Hrs
3.1	functional group interconve membered rings, disconnecti synthons and synthetic equiv unsaturated systems, monocyc	with the sist of the synthesis of the sy	11Hrs
3.2		nolecules: synthetic routes based on retrosynthetic	4Hrs
		les: prostaglandin A2, atropine and camphor. earth metals in organic synthesis	15 Hrs
4.1	Introduction, basic concepts complexes, oxidative addition Palladium in organic synthesi C bond formation, carbony organometallics and halides.C	, 18 electron rule, bonding in transition metal , reductive elimination, migratory insertion. s: π -bonding of Pd with olefins, applications in C- lation, alkene isomerisation, cross coupling of catalysis of cycloaddition reactions and heteroatom tween aryl/vinyl groups and N, S or P atoms.	7Hrs

	rhodium and chromium carbonyls in organic synthesis.	
4.3	Applications of Cerium (IV) in synthesis of heterocyclic quinoxalinederivatives and its role as a deprotectingagent.Sc(OTf)3 and Yb(OTf)3 as water tolerant Lewis acid catalysts in aldol condensation, Michael reaction, Diels-Alder reaction, Friedel-Crafts reaction, oxidation reactions.	3Hrs
	Suggested Readings:	
	 Advanced Organic Chemistry, Part A and Part B: Reaction and Synthesis, Francis A. Carey, Richard J. Sundberg, 5th Edition, Springer Verlag Modern Methods of Organic Synthesis, 4th Edition, W. Carruthers and Iain Coldham, Cambridge University Press, 2004. 	
	 Chem.Rev. 2002, 102, 2227-2302, Rare Earth Metal Triflates in Organic Synthesis, S. Kobayashi, M. Sugiura, H. Kitagawa, and W.W.L. Lam. Organic Chemistry, ClaydenGreeves Warren and Wothers, Oxford Press (2001). 	
	 Moder Organic Synthesis: An Introduction, G.S. Zweifel and M.H. Nantz, W.H. Freeman and Company, (2007). Advanced Organic Chemistry: Reaction Mechanism, R. Bruckner, Academic 	
	 Press (2002). 7. Principles of Organic Synthesis, R.O.C. Norman & J. M. Coxon, 3rd Edn., Nelson Thornes 	
	8. Organic Chemistry, 7th Edn, R. T. Morrison, R. N. Boyd, & S. K. Bhattacharjee, Pearson	
	 Strategic Applications of Name Reactions in Organic Synthesis, L. Kurti& B. Czako (2005), Elsevier Academic Press 	
	 Advanced Organic Chemistry: Reactions & Mechanisms, 2nd Edn., B. Miller & R. Prasad, Pearson 	
	11. Organic reactions and their mechanisms, 3rd revisededition, P.S. Kalsi, New Age International Publishers	
	12. Organic Synthesis: The Disconnection Approach, Stuart Warren, John Wiley & Sons, 2004	
	 Name Reactions and Reagents in Organic Synthesis, 2nd Edn., Bradford P. Mundy, Michael G. Ellard, and Frank Favoloro, Jr., Wiley-Interscience 	
	 Name Reactions, Jie Jack Lie, 3rd Edn., Springer Organic Electrochemistry, H. Lund, and M. Baizer, 3rd Edn., Marcel Dekker. 	

MSCHCC405T: MS(Masters), CH(Chemistry), CC(Core Course), 405(SEM IV),T(Theory)

2	CourseCode:MSCHCC406T	Course Title: Organic Spectroscopy
	Course Credit: 4	Total contact hours: 60 Hrs
Sr.No.	Course Contents (Topics and subtopics)	
	Unit 1: UV, IR, and Mass Spect	rometry
1.1	UV spectroscopy: Characteristic a	absorption of Organic chemistry
1.2	IR spectroscopy: Introduction. Coupled Interactions. Hydrogen Bonding. Dispersion IR Spectrometer. Principle and applications of FT-IR. Application in structure elucidation.	
1.3	ionization, FAB, MALDI, californion cyclotron analyzer, quadrupol HRMS, Rules of fragmentation of	rumentation various methods of ionization (field nium plasma), different detectors [magnetic analyzer, le mass filter, time of flight (TOF)]. Importance of f different functional groups, factors controlling different types of compounds like alkanes alkenes, ompounds, nitriles.
1.4	Problems based on combined use	of UV, IR, Mass and PMR spectroscopic techniques
	Unit 2:Advanced spectroscopic	techniques-I
2.1	relaxation time. First order, se simplification of complex spe spectroscopy and Spin system notations, AB, AX, suitable examples. Coupling in coupling.	in structure elucidation. Relaxation phenomenon and cond order and higher order spectra. Methods of ctra. Double resonance, NOE, NOE difference chemical shift reagents. AB ₂ -AX ₂ , AMX and A ₂ B ₂ -A ₂ X ₂ spin systems with aromatic and heteroaromatic systems, long range ms. FT-NMR spectroscopy: Pulse sequences, pulse vectors.
2.2	19F- NMR and 31P- NMR spectr	oscopy: Principles and applications.
2.3	ESR and Fluorescence spectrosco	
	Unit 3: Advanced spectroscopic	techniques -II
3.1	advantages and disadvantages, of factors affecting chemical shifts, of hydrocarbons, effect of subst (alkene, alkyne and allene), chemical shifts of carbonyl, nitril	difficulties. Proton Noise Decoupling technique off-resonance technique, Chemical shifts of solvents, analogy with 1H NMR, calculations of chemical shift ituents on chemical shifts, different types of carbons ical shift of aromatic carbons and effect of substituent. le, oxime carbons.proton coupled 13C - spectra, proton echnique, heteronuclear coupling of carbon to 19F and
3.2	Two-dimensional NMR spectrosc	copy: Introduction, COSY and HETCOR techniques,

	(including interpretation of COSY and HETCOR spectra). NOESY and ROESY techniques.
3.3	Problems based on combined use of advanced spectroscopic techniques.
	Unit 4: Interpretation of spectral data of organic compounds (UV, IR, NMR, 13C
	NMR and Mass spectra).
4.1	UV, IR, NMR,13C NMR, and Mass spectra of a compound from which preliminary information should be reported and complete structure of the compound elucidated by
	referring to any standard reference material etc.(Minimum 10 spectral analysis)
	Suggested Readings:
	1. V.M. Parikh, Application spectroscopy of organic molecule
	2. D.W. Williams and Flemming, Spectroscopic methods of organic
	compound.
	3. Silverstein and Basallar, Spectroscopic identification of organic
	compounds V.M.
	4. Parikh ORPTION SPECTROSCIPY OF ORGANIC MOLECULES (
	J. Wiley)
	5. P.S. Kalsi Spectroscope of organic compounds (New age publisher)
	6. J.R. Dyer. Application of absorption spectroscopy of organic
	compounds.
	7. Jackman and Sterneil, Application of NMR spectroscopy
	8. J.D. Roberts, Nuclear magnetic resonance (J. Wiley)
	9. Jafee and Orchin, Theory and application of U.V,
	10. K. Benjamin. Mass spectroscopy
	11. Beynon J H et.al, The mass spectra of organic molecules.
	12. Wehli F.W, Marchand A. P. Interpretation of carbon 13 NMR (J.
	Wiley)
	13. W. Kemp, Organic spectroscopy ELBS
	14. Willard Merritt and Dean. Instrumental methods of analysis CBS
	15. Das and Jame, Mass Spectroscopy.
	NMR
	1. High Resolution N.M.R, E.D. Becker, Academic Press (1969)
	2. Nuclear Magnetic Resonance E.R. Andrea, Cambridge University Press (1955)
	3. Pulse and Fourier transform N.M.R, T.C. Farror and E.D. Becker Academic Press N.Y (1971)
	ESR
	1. An introduction to Electron Paramagnetic Resonance, M.
	Bersohn&J.C.Baired,W.A.Benjamin , Inc N.Y. (1966)
	 High resolution ESR Spectroscopy F.Gerson, (John Wiley & sons–1970)
	NQR
	1. Nuclear Quadrupole Resonance in chemistry, G.K.Semin, T.A.Babushkina&
	G.G. Yakobson, John Wiley & sons,(N.Y.)-(1975)
	(1773)

MSCHCC406T: MS(Masters), CH(Chemistry), CC(Core Course), 406(SEM IV),T(Theory)

3	Course Code: MSCHDE405T	Course Title: Bioorganic Chemistry
	Course Credit: 4	Total contact hours: 60 Hrs
Sr.No.	Course Conter	nts (Topics and subtopics)
	Unit 1: Biomolecules-I	
1.1		hemical and enzymatic hydrolysis of proteins to
	peptides, amino acid sequencing. Seco	ondary structure of proteins, forces responsible
	for holding of secondary structures, α -	
	•	folding and domain structure. Quaternary
	structure.	
1.2		of physiologically important nucleotides (c-AMP,
		nd RNA), replication, genetic code, protein
1.2	biosynthesis, mutation.	- Dhaadaa Dhaadaa
1.3	Chemical synthesis of oligonucleotide	
	Unit 2: Biomolecules-II	methods including solid phase approach.
2.1		omenclature, classes and general types of
2.1	5 5	erties of enzymes: i) Enzyme efficiency/catalytic
		r's 'lock and key' and Koshland 'induced fit'
	hypothesis. Concept and identification	
2.2		ostrate concentration, enzyme concentration,
	•	n etc. Reversible and irreversible inhibition.
2.3	Mechanism of enzyme action: transiti	on-state theory, orientation and steric effect, acid-
	base catalysis, covalent catalysis, strai	
	chymotrypsincatalyzed hydrolysis of a	peptide bond.
	Unit 3: Biomolecules – III	
3.1		echanism of action and bio-modeling studies of
	the following coenzymes: nicotinamid	
		pyridoxal phosphate, Vitamin B12, biotin, lipoic
3.2	acid, Coenzyme A. Oxygen activation in biological system	as with reference to cytochromes
5.2	Unit 4: Biomolecules – IV	is with reference to cytoenionics.
4.1		synthesis and breakdown of glycogen.
		Hydrolysis, hydroxylation, oxidation and
	reduction.	
4.2	Enzymes in organic synthesis. Fermen	tation: Production of drugs/ drug intermediates
	by fermentation. Production of chiral	hydroxy acids, vitamins, amino acids, β -lactam
	antibiotics. Synthesis of chemicals via	microbial transformation, synthesis of L-
	ephedrine. Chemical	
	processes with isolated enzymes in fre	
		form (production of 6-aminopenicillanic acid).
	Suggested Readings:	(2009) Labrington principal
		(2008) Lehninger principles of Biochemistry 5th
	Edition, W. H. Freeman and Co 2. Stryer, Lubert; Biochemistry; V	1 0
1	\square	. 11. 1 100man publishets.

3.	Voet, D. and J. G. Voet (2004) Biochemistry, 3rd Edition, John Wiley & sons,
	Inc. USA.
	Zubay, Goffrey L; Biochemistry; Wm C. Brown publishers.
5.	V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J-M Basset,
	Chem. Rev. 2011, 111, 3036-3075;
	R. B. NasirBaig and R. S. Varma, Chem. Comm., 2013, 49, 752-770; 7.
	M. B. Gawande, A. K. Rathi, P. S. Varma, Appl. Sci., 2013, 3, 656-674;
	J. Govan and Y. K. Gun'ko, Nanomaterials, 2014, 4, 222-214.
9.	K. Philippot and P. Serp, Nanomaterials in catalysis, First Edition. Edited by P.
10	Serp and K. Philippot; 2013 Wiley –VCH Verlag GmbH & Co. K GaA
10	D. Astruc, Nanomaterials and Catalysis, Wiley-VCH Verlag GmbH & Co.
11	KGaA, 2008, 1-48;
	C. N. R. Roa, A. Muller and A. K. Cheetham, The chemistry of Nanomaterials,
10	Wiley-VCH Verlag GmbH & Co. KGaA, 2005, 1-11;
	• The organic chemistry of drug design and drug action, Richard B. Silverman,
13	2nd edition, Academic Press
	Medicinal chemistry, D.Sriram and P. Yogeeswari, 2nd edition, Pearson
14	• An introduction to drug design-S. S. Pandeya and J. R. Dimmock (New age
15	international) Durgen's modified shamistry and drug discovery, by Monfred F. Wolf
	Burger's medicinal chemistry and drug discovery. by Manfred E. Wolf
	Introduction to Medicinal chemistry. by Graham Patrick
	• Medicinal chemistry-William O. Foye
10	• T. B. of Organic medicinal and pharmaceutical chemistry-Wilson and Gisvold's (Ed. Robert F. Dorge
10	• An introduction to medicinal chemistry-Graham L. Patrick, OUP Oxford, 2009.
	• Principles of medicinal chemistry (Vol. I and II)-S. S. Kadam, K. R. Mahadik
20	and K.G. Bothara ,Niraliprakashan.
21	• Medicinal chemistry (Vol. I and II)-Burger
	• Strategies for organic drug synthesis and design - D. Lednicer Wiley 23.
	• Pharmacological basis of therapeutics-Goodman and Gilman's (McGraw Hill)
	• Enzyme catalysis in organic synthesis, 3rd edition. Edited by KarlheinzDrauz,
	Harold Groger, and Oliver May, Wiley-VCH Verlag GmbH & Co KgaA, 2012.
25	Biochemistry, Dr U Satyanarayan and Dr U Chakrapani, Books and Allied (P)
	Ltd.
26	Bioorganic, Bioinorganic and Supramolecular chemistry, P.S. Kalsi and J.P.
	Kalsi. New Age International Publishers
27	. The Organic Chemistry of Enzyme-Catalysed Reactions, Academic Press, By
	Richard B. Silverman
28	• Enzymes: Practical Introduction to structure, mechanism and data analysis, By
	Robert A. Copeland, Wiley-VCH, Inc.
29	. The Organic Chemistry of Biological Pathways By John McMurry, Tadhg
	Begley by Robert and company publishers
30	Bioorganic Chemistry- A practical approach to Enzyme action, H. Dugas and C.
	Penny. Springer Verlag, 1931
31	Biochemistry: The chemical reactions in living cells, by E. Metzler. Academic
	Press.

32. Concepts in biotechnology by D. Balasubrar	nanian& others
33. Principals of biochemistry by Horton & othe	rs.
34. Bioorganic chemistry - A chemical approach	to enzyme action by Herman
Dugas and Christopher Penney.	
35. Medicinal Natural Products: A Biosynthetic	Approach by Paul M. Dewick. 3rd
Edition, Wiley.	
36. Natural product chemistry, A mechanistic, bi	osynthetic and ecological approach,
Kurt B. G. Torssell, Apotekarsocieteten – Sv	• • • • •
37. Natural products Chemistry and applications	1 I
and S. Meenakshi, Narosa Publishing House	
38. Natural Products Volume- 2, By O. P. Agarv	
39. Chemistry of Natural Products, F. F. Bentley	and F. R. Dollish, 1974.
40. Natural Product Chemistry Vol.1 and 2, K. N	
S. Nozoo, Academic Press, 1974.	5
41. Chemistry of natural products, V.K. Ahluwa	lia, Vishal Publishing Co.
42. Green Chemistry: An Introductory Text, 2nd	Edition, Published by Royal
Society of Chemistry, Authored by Mike Lar	ncater.
43. Organic synthesis in water. By Paul A. Griec	o, Blackie.
44. Green chemistry, Theory and Practical, Paul	T. Anastas and John C. Warner.
45. New trends in green chemistry By V. K. Ahu	Ilwalia and M. Kidwai, 2nd edition,
Anamaya Publishers, New Delhi.	
46. An introduction to green chemistry, V. Kuma	ar, Vishal Publishing Co.
47. Organic synthesis: Special techniques. V.K.A	e

MSCHDE405T: MS(Masters), CH(Chemistry), DE(Discipline Specific), 405(SEM IV),T(Theory)

4	Course Code: MSCHDE406T	Course Title: Natural products and
		GreenChemistry
	Course Credit: 4	Total contact hours: 60 Hrs
Sr.No.	Course Contents (Topics and subtopics)	
	Unit 1:: Natural products-I	
1.1	Carbohydrates: Introduction to r branched sugars. Structure eluci	naturally occurring sugars: Deoxysugars, aminosugars, dation of lactose, D-glucosamine and mesoinositol ral features and applications of inositol, starch,
1.2	Natural pigments: General struc applications of: carotenoids, ant	tural features, occurrence, biological importance and hocyanins, quinones, flavones, pterins and porphyrins ion of β -carotene. Synthesis of ubiquinone from 3,4,5-
1.3	Insect pheromones: General stru from acetylene, disparlure from butadiene.Alkaloids: Occurrence and papaverine. Structure elucio	ictural features and importance. Synthesis of bombykol 6-methylhept-1-ene, grandisol from 2-methyl-1,3- e and physiological importance of morphine, coniine dation of papaverine.
	Unit 2:: Natural products-II	
2.1	 with special reference to reagent transformations: a) Woodward synthesis of Res b) Corey synthesis of Longifoli c) Gilbert-Stork synthesis of Grid) E. Wenkert's synthesis of β-v e) A.V.Ramarao synthesis of 4-f)Biosynthesis of selected natura citronellol. 	ne from resorcinol iseofulvin from phloroglucinol vetivone from acetone demethoxydaunomycin from ethyl acetoacetate. al products: L-tryptophan, cholesterol, ephedrine,
2.2	elucidation of PGE1 and PGF1a Insect growth regulators: Genera Plant growth regulators: Structu gibberelic acids and triacontano magnesium bromide and 12-bro Unit 3: : Natural products-III	al idea, structures of JH2 and JH3. ral features and applications of arylacetic acids, l. Synthesis of triacontanol (synthesis of stearyl mo-1-tetrahydropyranyloxydodecane expected).
3.1	structural and stereochemical fea hormones, steroidal alkaloids, st Synthesis of 16-DPA from chole	

3.2	Vitamins: Classification, sources and biological importance of vitamin B1, B2, B6,
	folic acid, B12, C, D1, E (α -tocopherol), K1, K2, H (β - biotin). Synthesis of the
	following: Vitamin B1 including synthesis of pyrimidine and thiazolemoieties Vitamin
	B2 from 3, 4-dimethylaniline and D(-)ribose Vitamin B6 from: 1) ethoxyacetylacetone
	and cyanoacetamide2) ethyl ester of N-formyl-DL-alanine(Harris synthesis) Vitamin E
	(α-tocopherol) from trimethylquinol and phytyl bromide Vitamin K1 from 2-methyl-1,
	4-naphthaquinone and phytol.
3.3	Antibiotics: Classification on the basis of activity. Structure elucidation of penicillin-G
	and cephalosporin-C. Synthesis of penicillin-G and phenoxymethylpenicillin from D-
	penicillamine and t-butyl phthalimidemalonaldehyde (synthesis of D-penicillamine and
	t-butyl phthalimidemalonaldehyde expected).
	Unit 4: Green chemistry
4.1	Introduction, basic principles of green chemistry. Designing a green synthesis: Green
	starting materials, green reagents, green solvents and reaction conditions, green
	catalysts.
	Use of the following in green synthesis with suitable examples: a) Green reagents:
	dimethylcarbonate, polymer supported reagents. b) Green catalysts: Acid catalysts,
	oxidation catalysts, basic catalysts, phase transfer catalysts [Aliquat 336,
	benzyltrimethyl ammonium chloride (TMBA), Tetra-n-butyl ammonium chloride,
	crown ethers], biocatalysts. c) Green solvents: water, ionic liquids, deep eutectic
	solvents, supercritical carbon dioxide. d) Solid state reactions: solid phase synthesis,
	solid supported synthesis. e) Microwave assisted synthesis: reactions in water, reactions
	in organic solvents, solvent free reactions. f) Ultrasound assisted reactions.
4.2	Comparison of traditional processes versus green processes in the syntheses of
	ibuprofen, adipic acid, 4-aminodiphenylamine, p-bromotoluene and benzimidazole.
	Suggested Readings:
	1. Natural product chemistry, A mechanistic, biosynthetic and ecological approach,
	Kurt B.G. Torssell, Apotekarsocieteten – Swedish Pharmaceutical Press.
	2. Natural products chemistry and applications, Sujata V. Bhat, B.A.
	3. Nagasampagi and S. Meenakshi, Narosa Publishing House, 2011.
	4. Organic Chemistry Natural Products Volume-II, O. P. Agarwal, Krishna
	Prakashan, 2011.
	5. Chemistry of natural products, F. F. Bentley and F. R. Dollish, 1974
	6. Natural Product Chemistry Vol.1 and 2, K. Nakanishi J. Goto. S.ItoMajori and
	S. Nozoo, Academic Press, 1974.
	7. Chemistry of natural products, V.K. Ahluwalia, Vishal PublishingCo. 2008.
	8. Green Chemistry: An Introductory Text, 2nd Edition, Published byRoyal
	Society of Chemistry, Authored by Mike Lancater.
	9. Organic synthesis in water. By Paul A. Grieco, Blackie.
	10. Green chemistry, Theory and Practical, Paul T. Anastas and John C.Warner.
	11. New trends in green chemistry By V. K. Ahulwalia and M. Kidwai, 2ndedition,
	Anamaya Publishers, New Delhi
	12. An introduction to green chemistry, V. Kumar, Vishal Publishing Co.
	13. Organic synthesis: Special techniques. V.K.Ahulwalia and RenuAggarwal

MSCHDE406T: MS(Masters), CH(Chemistry), DE(Discipline Specific), 406(SEM IV), T(Theory)

	Course Code:	Course Title: Recent Trends in Chemistry	
	MSCHSE401T		
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr. No.	Course C	ontents (Topics & subtopics)	Reqd. hours
	UNIT I Molecular Interact	tion	15 Hrs
1.1	Electric dipole moments, Po permittivity's	larizabilities and Polarization, Relative	
		Impact on medicine: Molecular recognition and total interaction. Impact on material science.	
		s and liquid surface interface. Surface film.	
	UNIT II Organic Solid-Sta	te Chemistry	15 Hrs
2.1	Topochemical control of solid	d-state organic reactions:	
	a. Intramolecular reaction	ns	
	b. Intermolecular reaction	ns	
	c. Asymmetric synthesis	5	
	d. Role of crystal defects	S	
	e. Role of molecular pac Organic reactions within Inor		
2.2	Electrically conducting organ	ic solids: Organic metals	
2.3	Organic charge transfer comp	lexes: New superconductors	
	UNIT III Nanoscience		15 Hrs
3.1	Introductions of nanomater Methods of synthesis of nar	ials. Classification of nanomaterials andproperties. nomaterials.	
3.2	Applications of Nanomaterials device Chips D) Catalysis. Disadvantages of nanomaterial	: A) Biomedical B) Fuel cell C) Next-Generation	
3.3	Characterization of nanoma	terials by XRD, EXAFS, XPS, SEM, TEM, AFM	
	UNIT IV		15 Hrs
4.1	Selection of Analytical Metho	od for Analysis	
	Sampling and Sample Prepar	ation of Environmental / Food samples	

	Stoichiometric calculations, Evaluation and Processing of Analytical data	
	Suggested readings	
1)	G. Schmid, Nanoparticle: From Theory to Applications, Wiley-VCH Verlag GmbH& Co. KGaA, 2004.	
2)	P. Dutta, S.Gupta (Ed), Understanding of Nanoscience and Technology, Global Vision Publishing House, 2006.	
3)	C.C. Koch, Nanostructured Materials: Processing, Properties and Applications, Jaico Publishing House, 2006.	
4)	Challa S.S.R. Kumar (Ed) Biological and Pharmaceutical Nanomaterials, John Wiley VerlogCmbh& Co., KgaA, 2006.	
5)	G. Schmid, Nanoparticle: From Theory to Applications, Wiley-VCH Verlag GmbH & Co. KGaA, 2004.	
6)	Green Synthesis of Nanomaterials Giovanni Benelli <u>www.mdpi.com/journal/nanomaterials</u> Edited by Printed Edition of the Special Issue Published in Nanomaterial	
7)	J.M.Thomas, S.E.Morsi and J.P. Desvergne, Topochemical phenomenon in organic solid stste state Chemistry, Adv Physical. Org.Chem, 15,64-151, 1977	
8)	A.R.West, Solid state Chemistry and its applications, John Wiley and Sons, 2003	
9)	I.Smart and E. Moore, Solid State Chemistry an introduction, Viva books pvt. Ltd, 2004	
10)	Atkins Physical chemistry 10 th edition	
11)	Analytical Instrumentation book by Ewing. Fourth edition	
	Course Outcome	
1)	This Paper is Interdisciplinary. Students will have knowledge of Recent development in all the branches of Chemistry	

MSCHSE402T: MS(Masters), CH(Chemistry), SE(Skill Enhancement), 402(SEM IV),T(Theory)

6	Course Code: MSCHPR403P	Course Title: Research Project	
	Course Credit: 8	Total contact hours: 120 Hrs	
Sr.No.	Course Contents (Topics and subtopics)		Reqd. hours.
1	Selecting Innovative Topic for Project		120
2	Referencing to be done for the chosen topic		Hrs
3	Practical work		
4	Writing the thesis in prescribed format		
5	Preparation of Power point presentation		
6	Presenting the research work		
	Objective:		
	Every post graduate (M.Sc.) student is required to prepare the project subject		
	related – based on the guidelines of his / her project guide.		
	The following are the guidelines to be adhered to		
	The project should be an individual one		
	The language for the project is English		
	The Minimum number of pages should be 60		
	Project observations, suggestions and conclusion shall form part of the project.		
	The Projects will be evaluated bot each	h by the Internal as well as External Examiner	
	The Division of marks for the Pro	ject Report is as mentioned below:	
	Wording of Title 10M		
	Objectives/ Formulation including Hypothesis 20M		
	Review of Literature 20M		
	Relevance of Project to Social Needs 40M		
	Methodology/ Technique/ Procedure Adopted (schemes) 70M		
	Summary/ Findings/ Conclusion 30M		
	Bibliography/ Annexure/ Foot not Total 200M	es IUM	

Eg. MSCHPR405 &406 P ; MS (Masters) CH (Chemistry) P R(Project) 405 &406(SEM IV)