Dr. Homi Bhabha State University, Mumbai

Syllabus for M.Sc. Physical Chemistry

Semester III and IV

(Choice Based Credit System)

(To be implemented from the academic year - 2021-2022)

	M.Sc. Sen	nester III : Physical Chemistry	
	Course Code:	Course Title: Atomic and Molecular: Structure	
	MSCHCC301T	and Spectroscopy	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr.No.	Cours	e Contents (Topics and subtopics)	Reqd.
	UNIT I. Atomic structu	°P	nours. 15 Hrs
1.1	Introduction to approxim	ate methods in Quantum Mechanics	10 1115
	1.1.1 Variation theorem.	linear and nonlinear variation functions.	
	1.1.2Perturbation theory.	non degenerate perturbation theory, first order	
	wave function correction	first order and second order energy	
	correction	, hist order and second order energy	
	1 1 3 Application of varie	ation and perturbation theory to ground state of	
	Helium Atom.	alon and perturbation theory to ground state of	
1.2	Multi –electron atoms: A	ntisymmetry and Pauli Principle, Slater determinants,	
	Hartree-Fock and conf	guration interaction wave functions, Slater type	
	orbitals, Gaussian orbital	s, orbitals plots, basis sets, density functional theory.	
	UNIT II : Atomic spect	roscopy	15 Hrs
2.1	Angular momentum, orb	ital, spin and total angular momentum, total angular	
	momentum (J) of many	electron atoms, Russell Saunders (L-S) coupling and	
	J-J coupling,.		
2.2	Term symbols, term symbols for multi electron atoms like He, Li, Be, B,C etc.		
2.3	Exchange of interactions	and multiplicity of states.	
2.4	Anomalous Zeeman Effe	ct and Paschen Back effect.	
2.5	Atomic spectra and selec	tion rules, energy level diagram of atomic sodium	
2.1	UNIT III: Molecular St	ructure	15 Hrs
3.1	The Born–Oppenheimer	approximation	
3.2	Calculation of energy of	bydrogen molecule ion using	
5.5	3 3 1 Valence bond meth	ad	
	3.3.1 Valence bolid meth	tment	
	3.3.3 Improvements in H	eitler-London treatment	
3.4	Electronic structure of po	lyatomic molecules	
	3.4.1 Valence bond meth	od for BeH ₂ , H ₂ O, NH ₃ , BH ₃ , CH ₄ ,	
	3.4.2 Huckel molecular o	rbital's Theory for–ethylene. Allyl system.	
	cyclopropenyl system and	d cyclobutadiene.	
	UNIT IV: Molecular sp	ectroscopy	15 Hrs
4.1	Rotational spectroscopy:	Einstein coefficients, classification of poly atomic	
	molecules- spherical top,	symmetric top and asymmetric top molecules,	
	rotational spectra of poly	atomic molecules Stark modulated microwave	
	spectrometer.		
4.2	Raman Spectroscopy :	Classical theory of molecular polarizability, pure	
	rotational. vibrational	and vibration-rotation spectra of diatomic and	
	polyatomic molecules.	polarization and depolarization of Raman lines	
	correlation between IR a	nd Raman spectroscopy instrumentation.	
4.3	Electronic Spectra of mo	lecules: Term symbols for linear molecules, selection	

rules, characteristics of electronic transitions-Franck-Condon principle, types	
of electronic transitions-d-d, vibronic, charge transfer, π - π *,n- π *transitions,	
fate of electronically excited states, fluorescence, phosphorescence,	
dissociation and pre-dissociation	
Reference Books	
1. Laidler and Miser, Physical Chemistry, 2 nd edition, CBS publishers, New	
Delhi. (Chapters11-14).	
2. Silbey and Alberty, Physical Chemistry, 3 rd edition, John Wiley and Sons, 2000.	
3. Atkins P.W, Physical Chemistry, Oxford University Press, 6 th edition, 1998.	
4. William Kemp, Organic spectroscopy, 3 rd Edition, ELBS, 1996.	
5. I. N. Levine, Quantum Chemistry, 5 th Edition (2000), Pearson	
Educ. Inc., New Delhi	
6. D. A. McQuarrie and J. D. Simon, Physical Chemistry : A Molecular	
Approach, (1998) Viva Books, New Delhi.	
7. J. N. Murrell, S.F.A. Kettleand, J.M.Tedder, Valence Theory, 2 nd Edition	
(1965), John Viley, NewYork.	
8. A. K. Chandra, Introductory Quantum Chemistry, 4 th edition(1994), Tata Mc Graw Hill, New Delhi	
9. D. A. McQuarrie, Quantum Chemistry, Viva Books Private Limited, New	
Delhi, first Indian ed., 2003.	
10.R. K. Prasad, Quantum Chemistry, 3rd Ed., New Age International	
Publishers, 2006.	
11. James E. House, Fundamentals of Quantum Chemistry, Second Ed.,	
Academic Press, 2005.	
12. C. N. Banwell and E. M. Mc Cash, Fundamentals of Molecular	
Spectroscopy, 4 th Ed., Tata-Mc Graw-Hill, 1994.	
13. M. L. Gupta, Atomic and Molecular Spectroscopy, New Age International	
Publishers, 2001.	
14. H. S. Randhawa, Modern Molecular Spectroscopy, Mc Millan India Ltd., 2003	
15. G. Aruldas, Molecular Structure and Spectroscopy, Prentice-Hall of India, 2001	
16 J. Michael Hollas, Modern Spectroscopy 4 th Ed John Wiley and Sons	
2004.	
Books for further reading	
1. R Drago, Physical Methods for Chemists, Saunders, Philadelphia, 1992.	
2. B. P. Straughan and S. Walker (Eds.), S pectroscopy–Vol1-3, Chapman and	
Hall, NewYork,1976.	
3. Donald L. Pavia, Gary M. Lampman and George S. Kriz, Introduction to	
Spectroscopy, 3 rd ed., Thomson, Brooks/Cole,2001.	
4. John P. Lowe, Quantum Chemistry, 3 rd ed., Academic Press, NewYork,	
2006.	
5. R. Anantharaman, Fundamentals of Quantum Chemistry, McMillan India Limited, 2001.	
6. Mahendra R. Awode, Quantum Chemistry, S. Chand and Co. Ltd., New	
Delhi, 2002.	
7. David O. Hayward, Quantum Mechanics for Chemists, Royal Society for	
Chemistry, 2002.	

	8. Jack Simons, An Introduction to Theoretical Chemistry, Cambridge	
	University Press,2003.	
	9. Victor M. S. Gil, Orbitals in Chemistry, A Modern Guide to Students,	
	Cambridge University Press, 2000.	
	10. A. K. Chandra, Introduction to Quantum Chemistry, 4 th Ed., Tata-McGraw-	
	Hill, 1994.	
	11. S. N. Datta, Lectures on Chemical Bonding and Quantum Chemistry,	
	Prism Books Pvt. Ltd., 1998.	
	12. R. Mc Weeny, Coulson's Valence,3 rd . Ed., Oxford University Press, 1979.	
	13. J. N. Murell, S. F. A. Kettle and J. M. Tedder, The Chemical Bond,	
	Wiley, 1985.	
	Course outcomes (Students will)	
1.	Learn the variation and perturbation methods and different types of orbitals.	
2.	Learn the angular momentum and coupling of angular momenta, term symbols and atomic spectra	
3	Get idea about LCAO method, calculation of energy of hydrogen molecule ion and	
	electronic structure of polyatomic molecules.	
4.	Learn rotational, Raman and electronic spectroscopy. Get idea about different types	of
	transitions.	

2	Course Code: MSCHCC302T	Course Title: Solid State and Nanochemistry	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr.No.	Course	e Contents (Topics and subtopics)	Reqd. hours.
	UNITI: Metals and all	lovs:	15 Hrs
1.1	Solidification of metals a	and alloys-homogeneous and heterogeneous	
	nucleation growth of crys	stals, growth of silicon single crystal.	
1.2	Metallic solid solutions-s	ubstitutional and interstitial solid solutions.	
1.3	Crystalline imperfections	-point, line and boundary defects	
1.4	Atomic diffusions in solid	ds-diffusion mechanisms, steady state and non-steady	
	state diffusions,-impurity	diffusion into silicon wafers for integrated circuits.	
	UNIT II : Mechanical p	roperties of solid materials	15 Hrs
2.1	Stress and strain in metal	s- Engineering stress and engineering strain, shear	
	stress and shear strain, the modulus of elasticity, yie	e tensile test and engineering stress -strain diagram, ld strength.	
2.2	Hardness and hardness te	sting plastic deformations of metals in single crystals	
	plastic deformation of po	lycrystalline metals, solid solution strengthening of	
	metals.		
2.3	Fracture of metals-ductile	e and brittle fracture, toughness and impact testing,	
	fatigue of metals, the cree	ep test ,creep-rupture test.	
	UNIT III : Nano chemis	try of gold, cadmium, selenide	15 Hrs
3.1	Variation of optical and r	nagnetic properties of non material with size, shape,	
	surface characteristics and	d impurities	
3.2	Relationship between siz	e and shape of nano materials	
3.3	Nano architecture: self assembly and template methods		
3.4	Diagnosis and treatment	of diseases using nano particles	
3.5	Safety and ethics of use of	f nano particles	
	UNIT IV : Nano chemis	try of silica and poly dimethyl siloxane	15 Hrs
4.1	Variation of optical and r	nagnetic properties of non material with size, shape,	
	surface characteristics and	d impurities	
4.2	Relationship between siz	e and shape of nano materials	
4.3	Nano architecture: self as	sembly and template methods	
4.4	Diagnosis and treatment	of diseases using nano particles	
	Reference Books		
	1. William F. Smith, Prin	ciples of Material Science and Engineering, 3 rd	
	edition, McGraw-HillInc	.1996.	
	2. Keer H.V, Principles o	f the Solid State, first reprint, Wiley Eastern Limited,	
	1994.		
	3. Principles of material	science and engineering, 3 rd edition, McGraw– Hill	
	Inc.1996.		
	4. Ludovico Cademartiri	and Geoffrey A. Ozin, Concepts of Nano Chemistry,	
	Wiley-VCH Verlag Gm	bH & Co,2009	
	5. C. Bréchignac, P. Hou Chemistry, Springer 2	dy, Marcel Lahmani, Nano Materials and Nano 007	
	6. C. N. R. Rao, Achim N	füller, Anthony K. Cheetham. Nano Materials	

	Chemistry, John Wiley & Sons, 2007	
	7. Geoffrey A. Ozin, André C. Arsenault, Ludovico Cademartiri, Nano	
	Chemistry: A Chemical Approach to Nano materials, Royal Society of	
	Chemistry (Great Britain),09	
	Books for further reading	
	1. A. R. West, Solid State Chemistry and its Applications, John Wiley and	
	Sons (Asia) Pvt. Ltd.	
2. L. E. Smart and E. A. Moore, Solid State Chemistry-An Introduct		
	Ed., Taylor and Francis, 2005.	
	3. V. Raghavan, Materials Science and Engineering, Fifth Ed., Prentice-Hall	
	Of India Pvt. Ltd., NewDelhi,2004.	
	4. William D. Callister, Jr., Materials Science and Engineering, An	
	Introduction, Fifth Ed., John Wiley and Sons (Asia) Pvt. Ltd., 2001.	
	5. S. O. Pillai, Solid State Physics, Fifth Ed., New Age International	
	Publishers, 2002.	
	6. Leonid V. Azaroff, Introduction to Solids, Tata-McGraw-Hill Publishing	
	Co. Ltd., New Delhi, 1977.	
	7. Sandra E. Dann, Reactions and Characterization of Solids, Royal Society	
	of Chemistry, 2000.	
	8. C. N. R. Rao and J.Gopalakrishnan, New Directions in Solid State	
	Chemistry, Seconded., Cambridge University Press, 1997.	
	9. N. B. Hannay, Solid State Chemistry, Prentice Hall of India, New Delhi,	
	1976.	
	10. M. Ali Omer, Elementary Solid State Physics, 5 th Indian Reprint, Pearson	
	Education, Inc., 1999.	
1	Course outcomes (Students will)	1' 1
1.	Learn the solidification of metals and alloys, defects in solids and diffusion in so	olids.
2.	Get knowledge about mechanical properties of solid - stress and strain, hardness	and
2	tracture of metals etc.	
3	diagnosis and treatment using nano particles	
4.	Learn nano chemistry of silica and poly dimethyl siloxane	

	Course Code: MSCHDE301T	Course Title: Advanced Instrumental	
	WISCHDESUT	reeninques r	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr.	Course (Contents (Topics and subtopics)	Read.
No.	Course	contents (Topies and Subtopies)	hours.
	UNIT I: Electron Spectr	oscopy and Microscopy	15 Hrs
1.1	Electron Spectroscopy: prin	nciples, instrumentation and applications of the	
	ESCA (XPS), AUGER, UP	'S	
1.2	Electron Microscopy: Princ	iples, instrumentation and applications of the	
	following:		
	Scanning Probe Microscop	es, Scanning Electron Microscope(SEM), Scanning	
	Tunneling Electron Micros	cope(STEM) and Atomic Force Microscope(AFM)	
	UNIT II : Thermal Metho	ods	15 Hrs
2.1	Thermogravimetry (TG): P	rinciple and Instrumentation, factors affecting	
	thermogravimetric curves,	Interpretation of thermo gravimetric curves.	
	applications of thermogravity	imetry	
2.2	Differential thermal analysi	s(DTA)and Differential scanning calorimetry	
	(DSC), Principle and instr	umentation, heat flux and power compensated DSC	
	Interpretation of DTA and	DSC curves applications of DTA and DSC.	
2.3	Enthalpimetric methods		
2.4	Thermometric titrations: Pr	inciple instrumentation and applications	
2.5	Evolved gas analysis (EGA): Principle and applications	
	UNIT-III Hyphenated Te	chniques	15 Hrs
3.1	Introduction, need for hyphenation, possible hyphenation.		
3.2	Interfacing devices and app	lications of the following: GC-MS, GC-IR, MS-	
	MS, HPLC-MS, ICP-MS, s	pectro-electro chemistry and radio-	
	chromatography.		
	UNIT IV: Electro-Analyt	ical Methods	15 Hrs
4.1	4.1 Over view of electrode	process: Electro-capillary curve and electro-	
	capillary maximum potenti	al.	
4.2	Micro electrodes: Mercury	electrodes: Stationary mercury drop electrode	
	(SMDE), Hanging mercury	drop electrode (HMDE), Mercury film electrode	
	(MFE), Carbon paste electr	ode and chemically modified electrodes.	
4.3	Introduction to three electro	ode system: Modern polarography and voltammetry	
	necessity and development	of new voltammetric techniques and their	
	comparison with classical I	DC polarography	
4.4	Voltammetric methods: San	mpled DC polarography (TAST), Linear sweep	
	voltammetry (LSV), Cyclic	voltammetry (CV), diagnostic criteria of cyclic	
	voltammetry		
	Reference Books		
	1. Skoog D A, West D M,	Fundamentals of Analytical Chemistry, Thomson	
	Asia Pvt ltd.,8 th Ed,(2004)		
	2. Skoog, Holler, Nieman,	Principles of Instrumental Analysis, Thomson	
	Asia Pvt Ltd., 5 th Ed (2003))	
	3. Sharma B. K., Instrumen	ntal Methods of Chemical Analysis, Goel	
	Publishing House.		
	0		

	5. Willard Merrit and Settle, Instrumental Methods of Analysis.	
	6. Douglas A. Skoog, Holler & Crouch, Instrumental analysis India edition	
	CENGAGE Learning (Eighth Indian Reprint 2011)	
	7. Robert D.Braun. Introduction to Instrumental Analysis (Indian	
	Reprint 2006)	
	8 Pavia, Lapman, Kriz, Introduction to Spectroscopy, Thomson Pub.	
	9. H. Straw, & K. Walker, Spectroscopy Vol .I& II, Science Paper Backs.	
	10. M. Mahindersingh, Analytical Chemistry, Instrumental Techniques,	
	Dominant Pub. Delhi.	
11. F. W. Fiefield, & D. Kealey, Principles and Practice of Analytical		
Chemistry, Blackwell Pub.		
	12 G W Ewing Instrumental Methods of Chemical Analysis MacGraw	
	Hill	
	1 2 P. P. W. Scott, Tandam Tachniques, Wiley India Put, I to Paprint, 2000	
	1. J. Dorker, Analytical chemistry for open learning. Mass	
	14. J. Barker, Analytical chemistry for open learning, Mass	
	Spectrometry, whiley india ED.	
	15. A. J. BardandL. R. Faulkner, Electrochemical Methods, 2 nd Ed, John	
	Wiley and Sons, Asia Pvt. Ltd, (2004)	
	16. J. J. Lingane, Electro-analytical Chemistry, 2 nd Ed, Interscience	
	Publishers, Inc., New York (1958)	
	17. A. M. Bond, Modern Polarographic Methods in Analytical Chemistry,	
	Marcel Dekker Publishers, Inc., New York, (1980)	
	18. A. J. Bard(Ed), Electro-analytical Chemistry, Marcel Dekkre Inc., New	
	York (A series of volumes)	
	19. Donald T. Sawyer, A. Sobkowiak and J. L. Roberts, Jr., Electro chemistry	
	For Chemists, 2 nd Ed., John Wiley and Sons, Inc., New York.,(1995).	
	20. D. A. Skoog, F. J. Holler, J. A. Nieman, Principles of Instrumental	
	analysis, 6 th Ed.	
	21. R. D. Braun, .Introduction to Instrumental Analysis, Mac Graw Hill, 1987.	
	22. H.A. Willard, L. L.Merritt, J. A. Dean &F .A. Settle, Instrumnetal	
	methods of Analysis,5 th Ed.CBS,1986.	
	23. M. Noel, K. J. Vasu, Cyclic Voltammetry and Frontiers of electro	
	chemistry, IBH, NewDelhi, 1990.	
	Course outcomes (Students will)	
1.	Understand the basic principle, instrumentation and applications of ESCA (XPS)	,
	AUGER, UPS, Scanning Probe Microscopes, Scanning Electron Microscope(SE	M),
	ScanningTunneling Electron Microscope(STEM) and Atomic Force Microscope	(AFM)
2.	Get information about thermal methods like TG, DTA, DSC, EGA and enthlpime	etric
-	methods.	
3	Learn hyphenated techniques like GC-MS, GC-IR, MS-MS, HPLC-MS, ICP-MS) ,
4	spectro-electro chemistry and radio-chromatography.	da
4.	Get the overview of electrode processes, learn about microelectrode, three electro	ode
	system and voltametric methods.	

	Course Code:	Course Title: Polymer Chemistry	
	MSCHDE302T	Total contact hourse 60 Una	
Sr	Course Creail: 4	Total contact nours: 60 Hrs	Read
No.	Course	Contents (Topics and Subtopics)	hours.
1.01	UNIT I: Polymer Chemistry-I		15 Hrs
1.1	Introduction: Polymer Science, fundamental terms, historical outline,		
	classification based on: the	e origin (natural, semi-synthetic, synthetic etc.), the	
	structure (linear, branched,	network, hyper branched, dendrimer, ladder, cross	
	linked, IPN), the type of a	tom in the main chain (homo chain, hetero chain),	
	the formation (condensation	on, addition), homo polymers, copolymers(random,	
	alternate, block, graft), the	e behavior on application of heat(thermoplastic and	
	thermosetting), the form	and application (plastics, fibre, elastomers and	
	resins).		
1.2	Molar Mass: Molecular	weight averages, fractionation, molecular weight	
	determination by GPC/SE	C, end group analysis, viscometry, vapour phase	
	osmometry, gradient elutio	n, and molecular weight distribution curve.	
1.3	Types of polymerization:	condensation, addition (cationic andanionic) and	
	Copolymerization (with ki	netics), chain transfer reactions.	
	Unit II: Polymer Chemis	try-II	15 Hrs
2.1	Polymers in solid state :	Transitions (glass transition and crystalline melting	
	temperature), crystalline	behaviour, factors affecting crystallinity, polymer	
	blends and Alloys.		
2.2	Identification and chara	cterization of polymers: Chemical analysis- End	
	group analysis; Physical	analysis by Spectral methods: IR, UV, Ramam,	
	NMR, X-ray Diffraction	Analysis, Microscopic methods: SEM, TEM,	
	Thermal analysis-TGA, DTA, DSC.		
2.3	Properties of polymers	Thermal (glass transition temperature, and its	
	determination), mechanica	al (deformation and fracture) effects in polymers,	
	visco elasticity surface (su	rface tension, hardness, friction, abrasion), physical	
	(Impact strength, Tensile	strength, solubility) of polymers, weather ability,	
	rheology and mechanical n	nodels, mechanical behavior, Rubber elasticity.	
	Unit III: Polymer Chemis	stry-III	15 Hrs
3.1	Techniques of poly	merization: Bulk polymerization, solution	
	polymerization, suspension	polymerization, emulsion polymerizations	
3.2	Thermodynamics of	polymer solutions : Solubility parameter,	
	thermodynamics of mixing	, theta temperature	
		· · · · · · ·	
3.3	Polymer technology:		
	3.3.1 Polymer auxiliaries,	plasticizers, heat Stabilizers, colorants, flame	
	retardants. Fillers, reinforc	ements.	
	3.3.2 Elastomers: Introduc	tion, Processing, Rubber Types, Vulcanization,	
	Properties. Reclaiming.		
	3.3.3 Fibers: Introduction,	production, Fiber spinning, Textile fibers, Industrial	
	fibers, recycling.		
	3.3.4 Films sheets: Introdu	ction and processing techniques (injection and blow	
	moulding extrusion), Recy	ling of plastics	

L

2.4		
3.4	Properties and applications of some commercially important polymers :	
	Carbon chain polymers- Polyoletins, ABS group, elastomers, vinyl polymers,	
	acrylic polymers, hetero chain polymers- polyethers, polycarbonates,	
	polysaccharides, polyamides fluoropolymers, Resins (epoxy, alkyd, phenol-	
	formaldehyde and urea formaldehyde),Silicones, polyphosphazenes, sulphur	
	containing polymers	
	Unit IV: Polymer Chemistry-IV	15 Hrs
4.1	Engineering and Speciality Polymers: engineering resins, high performance	
	polymers, heat resistant polymers, high impact resistance polymers, speciality	
	polymers, Liquid crystalline polymers, Conducting polymers,	
	Polyelectrolytes, polymers in nonlinear optics	
4.2	Applications of polymers in separations, biotechnology and electronics-	
	Membrane Separations, Biomedical Applications, photonic polymers nano-	
	wires, Encapsulation, Electronic shielding., Drag reduction, smart materials,	
	construction and building optical fibres	
4.3	Polymer degradation and stabilization: Oxidative, thermal, radiation,	
	Biodegradation	
	Reference Books	
	1. P. Bahadur and N. V. Sastry, Principles of Polymer Science, second edition	
	Narosa Publishing House 2005	
	2 C E Carraher Ir Carraher's Polymer Chemistry 8 th edition CRC Press	
	New York 2010	
	3 Joel R. Fried Polymer Science and Technology Prentice-Hall of India Pyt	
	Ltd 2000	
	A V P Cowarikar H V Viswanathan and I Sreadhar Polymer Science	
	4. V. K. Gowankar, H. V. Viswanathan and J. Steednar, Polymer Science.	
	5 E W Billmayer Ir. Text Book of Polymer Science 2 rd edition. John Wiley	
	and Song 1084	
	and Sons, 1904.	
	0. V. K. Alluwalia & A. Mislia, Folymer Science, A Text book, Alle-books	
	7 P. Sinha Outling of Polymer Technology Manufacture of Polymers	
	Prontice Hell Of India Dut Ltd. 2000	
	8 E. I. Davis, Dalymar Chamistry, Oxford University Press, 2000	
	8. F. J. Davis, Folymer Chemistry, Oxford University Press, 2000.	
	9. D. Walton & P. Lotimer, Polymer, Oxford University Press, 2000.	
	10. R. Ypung, Introduction to Polymers, Chapman & Hall, reprint, 1989.	
	11. v. Jain. Organic Polymer Chemistry, Iv Y Publishing House, 2003.	
	12. A. Singh, Polymer Chemistry, Campus Book International, 2003.	
	Books for further reading	
	1. J. M. G. Cowie, Polymers: Chemistry and Physics of Modern Materials, 2 nd	
	ed. (first Indian Reprint 2004), Replika Press Pvt. Ltd.	
	2. G. S. Misra, Introductory Polymer Chemistry, New Age International (P)	
	Limited, Publishers, 1995.	
	3. L. H. Sperling, Introduction to Physical Polymer Science. 2 th Edition, John	
	whey and Sons. Inc.	
	4. Hans-Georg Elias, An Introduction to Polymer Science, VCH 1997.	
	5. Charles E. Seymour, Jr., Seymour/Carraher's Polymer Chemistry, 6 th ed.,	
	Marcel Dekker, Inc, 2003.	
	6. A. Ravve, Principles of Polymer Science, 2 nd ed., Kluwer Academic/	
	Plenum Publishers, New York, 2000.	

	7. Vidyagauri Lele, Chemical modification of starch by green process, Techno
	World Press, 2015.
	8. Vidyagauri Lele, Graft copolymers of starch-Synthesis & Characterization,
	Neeraj Publishing House, 2015
	Course outcomes (Students will)
1.	Learn basics of polymer science, molecular weight determination and types of
	polymerization.
2.	Get idea about solid state polymers and characterization of polymers using various
	techniques, learn the properties of polymers.
3	Understand the polymer technology and properties of commercially important polymers.
4.	Learn about the engineering and speciality polymers and their applications in various
	fields, degradation and stability of polymers.

	Course Code:	Course Title : Research Methodology	
	MSCHGE301T		
	Course Credit:2	Total contact hours: 30 Hrs	
Sr.	Course	Contents(Topics and subtopics)	Reqd.
No.			hours.
	UNITI: Sources of Informa	ition	15Hrs
1.1	Primary, Secondary and T	ertiary sources.	05Hrs
1.2	Journals:		05Hrs
	Journal abbreviations, abstrac	cts, current titles, reviews, monographs, dictionaries,	
	text- books, current contents	s, Introduction to Chemical Abstracts and Beilstein,	
	Subject Index, Substance Inc	lex, Author Index, Formula Index, and other Indices	
1.0	with examples.		
1.3	Digital:		05Hrs
	Web sources, E-journals, Jou	Irnal access, TO Calerts, Hot articles, Citation Index,	
	Impact factor, H-index, E-co	nsortium. UGC infonet. E-books. Internet discussion	
	groups and communities, Blo	ogs, preprint servers, Search engines, Scirus, Google	
	Scholar, Chem Industry, Wiki	-databases, Chem Spider, Science	
	Direct, Sci Finder, Scopus.		
	UNIT II: Methods Of Scient	tific Research and Writing Scientific Papers	15hrs
2.1	Information Technology and I	ibuoury Descourses. The Internet and Would wide web	5hm
2.1	Internet resources for Chemis	try finding and citing published information	51118
	Shodhganga -a reservoir of Indian theses : Directory of open Access Journals		
2.2	Reporting practical and project	t work. Writing literature surveys and reviews.	5hrs
	organizing a poster display, g	iving an oral presentation.	
2.3	Writing Scientific Papers:		5hrs
	Justification for scientific c	contributions, bibliography, description of methods,	
	conclusions, the need for illu	stration, style, publications of scientific work, writing	
	ethics.		
	Plagiarism: Definition of Pla	igiarism, Types of Plagiarism with examples, strategies	
	Course Outcome.	nes (any one)	
	1) Students will learn commu	nication related to Science.	
	2) Awareness in terminology	related to Research.	
	3) Students will learn, to write	e and present experimental/research results.	
		REFERENCES	
	1 Deep I.D. Jones A.M.	Holmon D. Dood D. Wayara I. & Janas	
	1. Deall, J. K., Jolles, A.M.,	nonnes, D., Reed, K., Weyers, J., & Jones,	
	A.,(2011),Practical skills	in Chemistry, 2 Ed., Prentice Hall, Harlow.	
	2. Hibbert, D. B. & Gooding	g,J. J.(2006) Data Analysis for Chemistry	
	3. Topping, J.,(1984) Errors	of Observation and their Treatment 4 [™] Ed.,	
	Chapman Hill, London.		
	4. Harris, D. C. (2007) Quan	<i>tative Chemical Analysis</i> 6 th Ed., Freeman Chapters	
	3-5		
	5. Levie, R. De. (2001) How	ouse Excelin Analytical Chemistry and in general	
	scientific data analysis C	ambridge Universty Press	
	6 Research methodology +	achniques and methods C. L. Kothari. Now ago	
	International Publishers	conniques and methods, c. L. Rothall, New age	

5	Course Code:	Course Title: Pharmaceutical Development and	
	MSCHAE301T	Management	
	Course Credit: 2	Total contact hours: 30Hrs	
Sr.	Course Contents (Topics & subtopics)		
No.	· · · · · · ·		hours
	UNITI		7 Hrs
1.1	Understanding of	Pharmaceutical Industry: What drives the	
	pharmaceutical indust	ry, Subsections of Pharmaceutical industry	
1.2	The Pharmaceutical F	Products: Drug Development and the Marketing	
	Research Interface; Di	versification and Specialisation; Marketing Generic	
	Drugs; Non-prescriptio	n drugs.	
1.2	Competitive Practices	s: Economic and Competitive Aspects of the	
	Pharmaceutical Indust	ry.	
	Advertising; Detailing a	and other forms of Promotion; Retail Competition –	
	The Community Level;	International Marketing.	
1.3	Validation Process: Sel	ectivity , Linearity, Accuracy, Precision	
			/ Hrs
2.1	Six sigma in Pharmace	utical Manufacturing Industry	
	• How does Six S	Sigma work?	
	 Six Sigma Cust 	omer Benefits	
	 Build quality in 	Pharmaceutical Manufacturing Process through Six	
	Sigma		
	Introduction to Kaizen	Concept	
2.2	Quality by Design (Ql	D) : Why QbD, The characteristics of a successful	
	QbD program, The Ro	ble of Quality Risk Management in QbD.	
2.3	Review of GLP and GM	P and their regulations for analytical labs	
	Suggested readings		
1	Fundamentals of Analy	tical Chemistry, D.A. Skoog and D. M. West and F.	
	J. Holler Holt- Saunder	s 6 th Edition (1992)	
2	Principles of Instrumer	ital Analysis, D. A. Skoog, F. J. Holler and J.A.	
	Niemann,5 ["] Edition (19	998)	
3	Instrumental Methods	of Analysis, H. H. Willard, L. L. Merritt, Jr. J. A.	
	Dean and F. A. Settle J	r 6 th Ed CBS (1986)	
4	Fundamentals of Ana	lytical Chemistry, D. A. Skoog and D. M. West,	
	Saonders, College publ	ication.	
1	Students will get insig	: at of the management terms, used in Dharma	
	industry		
2	Students will get introv	luced to Pharmaceutical Legislation	

MSCHAE302T: MS(Masters), CH(Chemistry), AE(Ability Enhancement), 302(SEM III), T(Theory)

	M. Sc. Semester III : PHY	SICAL CHEMISTRY	
	Practical Papers		
1	Course Code:	Course Title:	
	MSCHLB301P		
	Course Credit: 2	Total contact hours: 120 Hrs	
	Course	Contents (Topics and subtopics)	Reqd. hours.
	1. To determine of the form	nula of the copper (II) ammonia complex by	
	partition method.		
	2.To determine the transpo	ort no. of copper (II) ions by Hittorf's method.	
	3. To determine the isoelec	tric point of gelatin by viscosity measurement.	
	4.To determine the formula	of the zinc(II) ammonia complex by partition	
	method		
	5. To determine the energy	of activation and other thermodynamic parameters	
	of activation for the reaction between persulphate and potassium iodide.		
	6. To study the order of the reaction between bromate and bromide.		
	7.To determine the mean id	onic activity coefficient of zinc chloride by emf	
	method.		
	8. To construct the phase d simple eutectic	iagram for a two component system forming a	
	9. To determine the equilib	rium constant for the reaction	
	$CaSO_4 (s) + 2Ag^{+1} (aq) = A$	$Ag_2SO_4(s) + Ca^{+2}(aq)$	
	10.To determine the compo	osition of a mixture of hydrochloric acid, potassium	
	chloride and ammonium ch	loride by titration with sodium hydroxide and	
	silver nitrate.		
	11.To determine ΔG , ΔHar	d ΔS of dissolution of a sparingly soluble salt by	
	Conductometry		
	12. To determine K ₁ and K	₂ of a dibasic acid by titration with a base	
	13. To determine dissociate	on constant of p-nitro phenol.	

Course Code: MSCHI B302P	Course Title:	
Course Credit: 2	Total contact hours: 120 Hrs	
Course	Contents (Topics and subtopics)	Reqd.
		hours.
1. Determination of the end	ergy of activation and other thermodynamic	
parameters of activation fo	r the acid catalyzed hydrolysis of methyl acetate.	
2. To determine the molar	mass of a nonvolatile solute by cryoscopic method.	
3. To determine the effect	of ionic strength of a solution on the reaction	
between potassium persulp	hate and potassium iodide.	
Conductometry		
4. To determine the molar	conductance of a weak electrolyte at infinite	
dilution hence to determine	e its dissociation constant.	
5. To titrate potassium ferro	becyanide with zine sulphate and hence to determine	
the formula of the complex		
Potentiometry		
6. To determine the E° of the	e quinhydrone electrode.	
7. To determine the formul	a of the zinc(II) ferrocyanide complex by titration	
of Zn(II) sulphate with pot	assium terrocyanide	
8.10 determine the liquid j	unction potential with a concentration cell with and	
without transference.		
pH metry	CI I II · · · I I · · · · · · · · · · · ·	
9.10 estimate the amount of	of hydrochloric acid and acetic acid in a mixture by	
titration with an alkali usin	g a pH meter.	
10. To determine hydrolys	is constant and degree of hydrolysis of ammonium	
chloride and hence to estin	hate the dissociation constant of the base.	
11. To determine the proto	n ligand stability constant of an organic acid and	
metal ligand stability const	ant of its complex by pH measurement.	
Colorimetry& spectroph	otometry	
12. To determine the ioniza	tion constant of bromophenol blue	
13. To study complex form	hation between nickel(II) with o-phenanthroline.	
14. To determine the rate c	onstant and the order of the reaction between	
persulphate and lodide ions	5.	
Reference Books		
1 B Vishwanathan and P	Raghayan Practical Physical Chemistry Viva	
Books Private Limited. 20)5.	
2. A.M. Jamesand, F. E. P	richard, Practical Physical Chemistry, 3 rd ed.,	
Longman,1974.		
3. B. P. Lewitt(ed.), Findla	ay's Practical Physical Chemistry, 9 th ed.,1973.	
4. C. D. Brennan and C. F.	H. Tipper, A Laboratory Manual of Experiments in	
Physical Chemistry, McGr	aW-H111,190/. arimantal Physical chamistry 10665 Vacabasha	
Colt d Tokyo	ermentai r nysteat enemisti y,19003, Kogakasila	
20 Lt u., 10ky0.		

	M.Sc. Sen	nester IV: Physical Chemistry	
1	Course Code: MSCHCC401T	Course Title: Symmetry & Spectroscopy	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr.	Course	e Contents (Topics and subtopics)	Reqd.
110.	UNIT I : Symmetry in (Chemistry	15 Hrs
1.1	Recapitulation: point gro	oups, character tables	
1.2	Reduction formula, appli water molecule.	cation of reduction formula to vibrational modes of	
1.3	Application in vibration for molecules such as H ₂	al spectroscopy, selection rules for IR spectroscopy O, CO ₂ , HF, H ₂	
1.4	Application to Raman sp	bectra, selection rules, comparison of IR and Raman	
	selection rules, general ap	pproach to vibrational spectroscopy.	
1.5	Symmetry in chemical molecular orbitals, H ₂ , H	bonding: symmetry adapted linear combination of I_2^+ , LiH, BeH ₂ , BH ₃ , CH ₄ , molecular orbital energy,	
	UNIT II : NMR spectre	DSCODV	15 Hrs
2.1	A review of one dimensio	onal NMR spectroscopy.	
2.2	Spin-relaxation. Nuclear	Overhauser Effect (NOE).polarization transfer	
2.3	Two-dimensional NMR.	: Correlation spectroscopy(COSY)	
2.4	Nuclear Overhauser effect	et Spectroscopy(NOESY)	
2.5	Hetero nuclear correlation	n Spectroscopy (HETCOR)	
2.6	Solid-state NMR		
2.7	Magnetic Resonance Ima	ging (MRI)	
	UNIT III : ¹³ C NMR sp	ectroscopy	15 Hrs
3.1	Elementary ideas, instru disadvantages. proton disadvantages, off-resona	umental difficulties, FT technique advantages and noise decoupling technique advantages and ince technique.	
3.2	Chemical shifts of solve ¹ HNMR.	ents, factors affecting chemical shifts, analogy with	
3.3	Calculations of chemica chemical shifts, different	l shift of hydrocarbons, effect of substituent's on types of carbons (alkene, alkyne and allene).	
3.4	Chemical shift of aromati	c carbons and effect of substituent.	
3.5	Chemical shifts of carbor	yl, nitrile, and oxime carbons.	
	UNIT IV: ESR and Mos	ssbauer Spectroscopy	15 Hrs
	 4.1.1 Basic principle, hyp 4.1.2 G-value and the face energies in paramagnet degeneracy) 4.1.3 An isotropic effects of triplet states; Structura 4.1.4 Fundamentals and radicals spin densities Model 	perfine splitting (isotropic systems) ctors affecting thereof; interactions affecting electron ic complexes (Zero-field splitting and Kramer's (the g-value and the hyperfine couplings); The EPR l applications to transition metal complexes. hyper fine splitting, application to study of free cConnell relationship Zero field splitting.	

4.2	Mossbauer Spectroscopy: Principles, Recoil free emission and absorption of γ -		
	rays, experimental methods, isomer shift, hyperfine structure (quadrupole		
	interaction)		
	Reference Books		
	1.K.Veera Reddy, Symmetry and Spectroscopy of Molecules, 2 nd ed, New		
	Age International Publishers.		
	2. U. C. Agarwal, H. L. Nigam, S. Agarwal, S. S. Kalra, Molecular Symmetry		
	in Chemistry via Group Theory, 2013, Ane Books Pvt. Ltd.		
	3.H.N. Dass, Symmetry and Group Theory for Chemists, 2004, Asian Books		
	Pvt. Ltd.		
	4. K. V. Raman, Group Theory and its Applications to Chemistry, 1980, 1 ata		
	5 P K Bhattacharya Group Theoryand its Chemical Applications 1000		
	J. F. K. Dhattacharya, Group Theoryand its Chemical Applications, 1999, Himalaya Pub House		
	6. F. A. Cotton, Chemical Applications of Group Theory, Wiley Student Ed.		
	2006, John Wiley and Sons, (Asia) Pvt. Ltd.		
	7. R. L. Carter, Molecular Symmetry and Group Theory, Wiley Student Ed.,		
	1996, John Wiley and Sons, (Asia) Pvt.Ltd.		
	8. S. Swarnalakshmi, T. Saroja, R. M. Ezhilarisi, A Simple Approach to		
	Group Theory in Chemistry, 2008, Universities Press (India) Pvt. Ltd.		
	9. A.E. Derome, Modern NMR Techniques for Chemistry Research,		
	Pergamon, Oxford (1987)		
	10. J. K. M. Sanders and B.K. Hunter, Modern NMR Spectroscopy, Oxford University Press, Oxford, edition (1993)		
	11 R K Harris Nuclear Magnetic Resonance Spectroscopy (1986) Addison-		
	Wesley, Longman Ltd. London		
	12. Organic Spectroscopy by William Kemp, 3 rd Edition, ELBS, 1996.		
	13. J. Michael Hollas, Modern Spectroscopy ,4 th Ed., John Wiley and Sons,		
	2004.		
	14. C. N. Banwell and E. M. McCash, Fundamentals of Molecular		
	Spectroscopy, 4 th Ed., Tata-McGraw-Hill,1994.		
	15. M. L. Gupta, Atomic and Molecular Spectroscopy, New Age International Dublishers, 2001		
	16 H S Randhawa Modern Molecular Spectroscopy McMillan India		
	Ltd. 2003		
	17. G. Aruldas, Molecular Structure and Spectroscopy, Prentice-Hall of India,		
	2001.		
	18. Donald L. Pavia, Gary M. Lampman and George S. Kriz, Introduction to		
	Spectroscopy,3 rd ed., Thomson Brooks, Cole,2001.		
1	Course outcomes (Students will)		
1.	Raman spectroscopy and chemical bonding.	oscopy	
2.	Get information about two dimensional NMR. Solid state NMR and Magnetic		
	Resonance imaging.		
3	Understand basic principle and applications of ¹³ C NMR spectroscopy.		
4.	Learn basic principles and applications of ESR and Mossbauer spectroscopy.		

	Course Code: MSCHCC402T	Course Title: Statistical Thermodynamics, Irreversible Thermodynamics and Catalysis	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr. No.	Course	e Contents (Topics and subtopics)	Reqd. hours.
	UNIT I: Statistical Mec	hanics	15 Hrs
1.1	Thermodynamic probabil	ity: Combinatral problems, Sterling apporoximation,	
	Lagranges method, macro law.	o and microstates, ensembles, Boltzmann distribution	
1.2	Partition functions: Tra	anslational, rotational, vibrational, electronic and	
	nuclear partition function	ons, Expressions for the thermodynamic functions	
	interms of partition func	tion -Internal energy, heat capacity, the Helmholtz	
	and Gibbs functions, Er	nthalpy, entropy and equilibrium constants. Sackur –	
	Tetrode equation for the	entropy of a mono atomic gas. Molecular partition	
1 2	IUNCIION.	a Einstein and Fermi Dines statistics	
1.5	Debye and Einstein the	vry of specific heats of solids	
1.4	UNIT II. Irrovorsible T	hormodynamics	15 Hrs
2.1	Non-equilibrium thermo	dynamics :	15 1115
2.1	2.1.1 Features of non-equ	ilibrium thermodynamics, second law of	
	thermodynamics, uncom	bensated heat and its relation to thermodynamics	
	function.		
	2.1.2 Entropy production	and its rate. Entropy production in heat transfer	
	process and during mixin	g of gases. Entropy production and efficiency of	
	galvanic cell.		
	2.1.3 Onsagers theory: R	eciprocal relation, principle of microscopic	
	reversibility. Coupled and	d uncoupled reactions and their condition.	
	2.1.4 Transport phenome	na across membranes. Electro kinetic effect and	
	thermo mechanical effect	S	
	UNIT III:Catalysis 1		15 Hrs
3.1	3.1.1 Theories of catalysi	s- intermediate compound formation theory and	
	adsorption theory.	uis automatalusis monotius actalusis showed misting	
	of catalytic reactions con	vsis, autocatarysis, negative catarysis, characteristics	
	promotion and deactivati	on	
	3.1.3 Types of catalysis:	homogeneous, heterogeneous, Enzyme catalysis,	
	effect of temperature and	pH on enzyme catalysis.	
	3.1.4 Heterogeneous cata	lysis and catalytic kinetics: concept of Langmuir-	
	Hinshelwood		
3.2	Preparation of catalysts:		
	3.2.1 General methods for	r preparation of catalysts: precipitation, sol-gel,	
	hydrothermal, impregnat	ion, hydrolysis, vapour deposition.	
	3.2.2 Activation of catal	ysts: calcinations, reduction.	1
	UNIT IV: Catalysis 2		15 Hrs
4.1	determination VDS AFS	Surface area, pore size distribution, particle size	
	usiernination, AFS, AES		

4.2	Catalysis in green chemistry and environmental applications: Purification of	
	exhaust gases from different sources: auto-exhaust catalysts (petrol vehicles,	
	diesel vehicles), VOC removal; ozone decomposition.	
4.1	Photo-catalysis: Photo processes at metals, oxides and semiconductors:	
	concepts and mechanism. Photocatalysis application in organic pollutant	
	degradation present in water and air. Photocatalytic water splitting,	
	photocatalysis in the field of energy and environment.	
	Reference Books	
	1. Atkins P.W.PhysicalChemistry,Oxford UniversityPress,6 th edition,1998	
	2. JohnM.Seddon&JulianD.Gale.Thermodynamics and Statistical	
	Mechanics, Tutorial Chemistry Texts Series, Vol. 10, Royal Society of	
	Chemistry.2001.	
	3. Silbey RJ & Alberty RA Physical Chemistry 3 rd edition. John Wiley and	
	Sons. Inc. 2002	
	4 Laidler K L and Meiser J H. Physical Chemistry 2 nd edition CBS	
	nublishers & distributors 1999	
	5. B K Agarwal and M Eisner Statistical Mechanics (1988) Wiley Eastern	
	New Delhi	
	6 D A McOuarrie Statistical Mechanics (1976)Harper and Row Publishers	
	New York	
	7 Physical Chemistry of Surfaces W Adamson Wiley Intersciences (5th	
	edition) 1990	
	8. Heterogeneous Catalysis: Principles and Applications. Bond. G.C. Oxford	
	University Press 1987	
	9. Heterogeneous Catalysis, D.K. Chakrabarty and B. Viswanathan, New Age	
	Publishers	
	10. Principles of Physical Chemistry by Puri, Sharma, Pathania, 45 th edition	
	11. Catalytic Chemistry, B.C. Gates, John Wiley and Sons Inc. (1992)	
	12. Solid State Physics – N.W. Aschocruts& N.D. Mermin. Saunders College	
	13 Material Science & Engineering An Introduction - W.D. Callister	
	Willey 8 Principles of solid state $-$ H V Keer Willey	
	14 Materials Science – Anderson Leaver Alexander & Rawlings FLBS	
	15 Theromotronic liquid crystals Gray Willey	
	16. Text Book of liquid crystals – Kelkar&Halz, ChemieVerlag	
	10. Text book of inquid crystals - Keikareenaiz, chemie verlag	
	Course outcomes (Students will)	
1.	Get knowledge about probability distribution partition function Maxwell-Boltz	zmann
	Bose-Einstein and Fermi-Dirac statistics and theory of specific heat of solids.	,
2.	Understand the concepts of irreversible thermodynamics.	
3	Learn theories and different types of catalysis. Synthesis and activation of cataly	st.
1	Learn abarratorization of antalist was of antalist in successful with the second	ma=4-1
4.	Learn characterization of catalyst, use of catalyst in green chemistry and environ	imental

4	Course Code:	Course Title : Surface and Electrochemistry	
	MSCHDE401T	Total contact hourse 60 Ur g	
<u>C</u> r	Course Credit: 4	Contents (Tenies and subtenies)	Boad
No.	Course	Contents (Topics and subtopics)	hours.
	UNIT I : Surface Chemis	try	15Hrs
1.1	Adsorption at liquid surfac	es, Gibbs equation and its verification, Gibbs	
	Monolayers, insoluble film	s on liquid substrates, states of monomolecular	
	Films, Wetting, flotation, c	letergency.	
1.2	Adsorption forces, thermo	dynamics of physical adsorption, heat of adsorption	
	and its determination, mea	surement of adsorption by different methods,	
	chemisorption and its meet	hanism.	
1.3	Multilayer adsorption – cri	tical comparison of various multilayer models-	
	BET, Potential and Polany	i models (no derivation). Measurement of surface	
	area of solids by different	methods. Harkins and Jura equation.	
	UNIT II :Modern Applic	ations of Surface Chemistry	15Hrs
2.1	Surface active agents and a	nicelle:	
	2.1.1 Surface active agent	s and their classification, hydrophile-lipophile	
	balance		
	2.1.2 Micellization: shape	and structure of micelles, hydrophobic interaction,	
	critical Micelles concentra	ation (cmc), factors affecting cmc of	
	surfactants, counter ion bir	iding to micelles, micelle catalysis, reverse	
	micelles.		
	2.1.3 Emulsions: Solubiliz	ation, micro emulsions, characterization of	
	microemulsions,		
2.2	Hydrogen storage by Adso	rption:	
	2.2.1 Hydrogen storage: fi	andamentals physisorption, temperature and	
	adsorption	orphon, adsorphon energy, Electrochennear	
	2.2.2. Practical adsorption:	storage of hydrogen with carbon materials,	
	activated carbon, graphite	graphene, carbon nano structures, fullerene.	
	Carbon nano fibres(CNF)	and graphite nano fibers electrochemical	
	storage of hydrogen in car	oon materials.	1.511
2.1	UNIT III: Electrochemi	stry I	15Hrs
5.1	Theory limited and extend	ad law. Ion transport in solution: Fick's laws of	
	diffusion Einstein relation	between diffusion coefficient and ionic mobilities	
	The Nernst-Finstein equation	ion relation between absolute and conventional	
	mobilities	ion, relation between absolute and conventional	
	INIT IV · Flectrochemist	rv II	15Hrs
4 1	Electrodics – Standard elec	ptrode potentials. Liquid junction potential. Zeta	
	potential electro kinetic pl	penomena electrode-electrolyte interface double	
	laver theories. Butler- Volu	mer equation, and Tafel equation.	
4.2	Applications -Fuel cells an	d batteries – primary and secondary power cells.	
	Fuel cells. Li ion battery		
4.3	Solar Cells: photovoltaic a	nd photogalvanic cells; photoelectron chemistry:	
	prospects of solar energy c	onversion and storage,organic solar cells	
<u> </u>	Reference Books		
	1. Physical Chemistry of S	urfaces – A. W. Adamson, Interscience Publishers	
	Inc New York, 1967.	·	
L	1		1

	2. Surface Chemistry – Theory and applications, J. J. Bikerman, Academic	
	Press, New York 1972.	
	3. Adsorption, Surface Area and Porosity – S. J. Gregg and K. S. W. Sing,	
	Academic Press Ltd., London 1967.	
	4. Zeolites and Clay Minerals as Adsorbents and Molecular Sieves, R. M.	
	Barrar, Academic Press London.	
	5. Physical Adsorption of Gases, D. M. Young and A. D. Crowell,	
	Butterworths, London, 1962.	
	6. Adsorption, J. Oscik, John Wiley and Sons. New York.	
	7. Physical Chemistry - Peter Atkins, Julio de Paula, 7th Edition Oxford	
	University Press.	
	8. M. J. Rosen. Surfactants and Interfacial Phenomena (3rd edn.), John Wiley	
	(2004).	
	9. Y. Moroi, Micelles: Theoretical and Applied Aspects, (1992) Plenum	
	Press, New York	
	10.ArunK.Chattopadhyay,KashmiriLalMittal,SurfactantsinSolution,	
	Volume64of Surfactant Science Series, Volume 64 of Lecture Notes in	
	Pure and Applied Mathematics, illustrated, MarcelDekker, 1996	
	11. K. L. Mittal, American Chemical Society, Micellization, solubilisation and	
	microemulsions, Volume1, American Chemical Society, illustrated,	
	PlenumPress,1977	
	12.Deepak Thassu, Michel Deleers, Yashwant Pathak, Nano particle Drug	
	Delivery Systems, Volume 166 of Drugs and the Pharmaceutical Sciences	
	Series illustrated, CRC Press, 2007	
	13. K. R. Lange. Surfactants, Hanser Pub.(1999).	
	14. R.Zana(ed.).Dynamics of Surfactant Self-Assemblies, CRC Press(2005).	
	15. M. Abe & J. F. Scamehorn. Mixed Surfactant Systems, CRC Press(2004).	
	16. Tushar K. Ghosh, Energy Resources and Systems: Volume 2: Renewable	
	Resources, Volume2, Springer Link:Bucher, Springer, 2011	
	1/.R. Strobel, J. Garche, P.I. Moseley, L. J. Orissen, G. Wolfd. "Review	
	Hydrogen storage by carbon materials. Journal of Power Sources	
	(www.sciencedirect.com) 159 (June 2006): 781–801.	
	Technologies: New Materials Transport and Infrastructure. John Wiley &	
	Song 2012	
	10 Modern Electrochemistry Vol I & II I O'M Bockris and AKN Eddy	
	Plenum Press N V	
	20 Fuel cells - heir Electrochemistry IO'M Bockris and S Srinivasan	
	McGraw Hill NY (1969)	
	21 Fuel cell systems L L M Blomen and M N Mugerwa Plenum Press NY	
	(1993)	
	Course outcomes (Students will)	
1.	Get basic knowledge and modern applications of surface chemistry.	
2	Learn basics and applications of electrochemistry	
4.	Learn susies and applications of electroenennistry.	

	Course Code: MSCHDE402T	Course Title: Advanced Instrumental Techniques II	
	Course Credit: 4	Total contact hours: 60 Hrs	
Sr. No.	Course C	ontents (Topics and subtopics)	Reqd. hours.
	UNIT I : Spectral Methods		15 Hrs
	Principle, instrumentation and	nd applications of the following:	
1.1	Reflectance spectroscopy		
1.2	Photo-acoustic spectroscopy		
1.3	Polarimetry : ORD, CD		
1.4	Chemiluminescence method		
1.5	Nuclear quadruple resonance	e spectroscopy, ENDOR, ELDOR, EWDOR	
	UNIT II: Electro-analytica	I Methods – I	15Hrs
	Principles, instrumentation a	and applications of the following :	
2.1	Ion selective field effect tran	isistors, bio-catalytic membrane electrodes,	
	disposable multi layer p-lon	systems, screen-printed electrodes.	
2.2	Chrono potentiometry and c	hrono amperometry	
2.3	Fused salt electrolysis	134.41.51.	1511
2.1	UNIT III: Radio-analytica	a Methods	151115
3.1	Activation analysis-basic pr	viction analysis,	
2.2	Isotonia dilution mathad pri	nainly and applications	
3.2	Auto x ray and gamma radi	ography	
5.5 2.4	Auto, x-ray and gamma radiography		
5.4 2 E	Applications of radio apply	ical techniques	
3.5	INIT IV · Pulso polorogra	nby	15Hrs
<u> </u>	Normal pulse polarography	(NPP) Differential pulse polarography (DPP)	151115
7.1	Double differential pulse po	larography (DDPP)	
4.2	Sinusoidal AC polarography	Square wave polarography	
4.3	Applications of electrochem	ical methods in Organic synthesis	
	Reference Books		
	1. A. J. BardandL. R. Faulki and Sons, Asia Pvt. Ltd, (20	ner, Electrochemical Methods, 2 nd Ed, John Wiley 04).	
	2. J.J. Lingane, Electro-ana Publishers, Inc., New York	lytical Chemistry, 2 nd Ed, Inter science (1958)	
	3. A. M. Bond, Modern Pol	arographic Methods in Analytical Chemistry,	
	Marcel Dekker Publishers, I	nc., New York,(1980)	
	4. A. J. Bard(Ed), Electro-a	nalytical Chemistry, Marcel Dekkre Inc.,	
	New York (A series of volu	mes).	
	5. Donald T. Sawyer, A. So	bkowiakand, J. L. Roberts, Jr., Electro	
	Chemistry For Chemists, 2 ^r	^d Ed., John Wiley and Sons, Inc., New	
	York.,(1995).		
	6. D. A. Skoog, F. J. Holler Analysis, 6 th Ed.	, J. A. Nieman, Principles of Instrumental	
	7. R. D. Braun, Introduction	to Instrumental Analysis, Mac Graw Hill, 1987	
	8. H.A. Willard, L. L. Merri	tt, J. A. Dean &F. A. Settle, Instrumnetal methods	
	of analysis, 5th Ed.CBS,198	6.	
	9. M. Noel, K. J. Vasu, Cycl	ic Voltammetry and Frontiers of Electro	

	chemistry, IBH, New Delhi, 1990.	
	10. P. T. Kissinger, W. R. Heinman, Laboratoty Techniques in Electro	
	analytical Chemistry, Dekkar, NY.1984.	
	11. J. Ruticka and J. Stary, Sub Stoichiometry in Radio Chemical Analysis,	
	Pergamon Press,(1968)	
	12. R. A. Faires and G. G .J. Boswell, Radio Isotope Laboratory Technique,4 th ,	
	Ed, Rutterworths; London, (1981)	
	13. D. Brune, B. Forkman, B.Person, Nuclear Analytical Chemistry,	
	Chartwell- Bratt Ltd.,(1984)	
	14. Maheshwar Sharon and Madhuri Sharon, Nuclear Chemistry, Ane Books	
	Pvt. Ltd.(2009)	
	15.Essentials of Nuclear Chemistry, H. J Arnikar, Wiley Eastern Limited, 4 th	
	Edition.(1995)	
	Course outcomes (Students will)	
1.	Get knowledge of various spectral methods .	
2.	Learn - Ion selective field effect transistors, bio-catalytic membrane electrodes,	
	disposable multi layer p-Ion systems, screen-printed electrodes, Chrono potentio	metry
	and chrono amperometry.	
3	Understand the principles and applications of radioanalytical techniques.	
4	Learn different types of polarography.	

	Course Code:	Course Title: Recent Trends in Chemistry	
	MSCHSE401T		
	CourseCredit:4	Total contact hours: 60Hrs	
Sr. No.	Сог	rrse Contents (Topics & subtopics)	Reqd. hours
	UNIT I Molecular In	iteraction	15 Hrs
1.1	Electric dipole momen permittivity's	ts, Polarizabilities and Polarization, Relative	
1.2	Interaction between r	nolecules	
	Interaction between d and drug design Rep science. Hydrogen stor	ipoles, Impact on medicine: Molecular recognition pulsive and total interaction. Impact on material rage in molecular clathrates.	
1.3	Gases and Liquids		
	Molecular interaction i Condensation.	in gases and liquid surface interface, Surface film,	
	UNIT II Organic Solid-State Chemistry		15 Hrs
2.1	Topochemical control o	f solid-state organic reactions:	
	a) Intramolecular r	eactions	
	b) Intermolecular r	eactions	
	c) Asymmetric syn	thesis	
	d) Role of crystal d	lefects	
	e) Role of molecul	ar packing arrangements	
22	Organic reactions within	n Inorganic host structures	
2.2	Electrically conducting	organic solids . Organic metals	
2.3	Organic charge transfer	complexes : New superconductors	
	UNIT III Nanoscience	e	15 Hrs
3.1	Introductions of nano	materials, Classification of nanomaterials and	
	Properties, Methods of	synthesis of nanomaterials.	
3.2	Applications of Nanoma	terials : A) Biomedical B) Fuel cell C) Next-	
	Generation device Chips	D) Catalysis.	
	Disadvantages of nanon	naterials	
3.3	Characterization of na	nomaterials by XRD, EXAFS, XPS, SEM, TEM, AFM	

	UNIT IV	15 Hrs
4.1	Selection of Analytical Method for Analysis	
	Sampling and Sample Preparation of Environmental/Food samples	
	Stoichiometric calculations, Evaluation and Processing of Analytical data	
	Suggested readings	
1)	G. Schmid, Nanoparticle : From Theory to Applications, Wiley-VCH Verlag GmbH & Co. KGaA, 2004.	
2)	P. Dutta, S. Gupta (Ed), Understanding of Nanoscience and Technology, Global Vision Publishing House, 2006.	
3)	C.C.Koch, Nanostructured Materials: Processing, Properties and Applications, Jaico Publishing House, 2006.	
4)	ChallaS.S.R.Kumar(Ed) Biological and Pharmaceutical Nanomaterials, John Wiley Verlog Cmbh & Co., KgaA, 2006.	
6)	Green Synthesis of Nanomaterials Giovanni Benelli	
	www.mdpi.com/journal/nanomaterials Edited by Printed Edition of the Special Issue Published in Nanomaterial	
6)	J. M. Thomas, S. E. Morsi and J.P. Desvergne, Topochemical phenomenon in organic solid state Chemistry, Adv Physical. Org. Chem, 15,64-151, 1977	
7)	A. R. West, Solid state Chemistry and its applications, John Wiley and Sons, 2003	
8)	I. Smart and E. Moore, Solid State Chemistry an introduction, Viva books pvt. Ltd,2004	
9)	Atkins, Physical chemistry 10 th edition	
10)	Analytical Instrumentation, Ewing., Fourth edition	
	Course Outcome	
	This Paper is Interdisciplinary. Students will get knowledge of Recent development in all the branches of Chemistry	

MSCHSE402T: MS(Masters), CH(Chemistry), SE(Skill Enhancement), 402(SEM IV), T(Theory)

	Course Code:	Course Title: Research Project	
	MSCHPR401P		
	Course Credit: 8	Total contact hours: 60 Hrs	
Sr.	Course Contents (Topics and subtopics)		Reqd.
No.			hours.
			120
	Objective:		
	Every post graduate (M.Sc.) student is required to prepare the project subject		
	related – based on the guidelines of his / her project guide.		
	The following are the guidelines to be adhered to		
	The project should be an individual one		
	The language for the project is English		
	The Minimum number of pages should be 60		
	Project observations, suggestions and conclusion shall form part		
	of the project.		
	The Projects will be evaluated both by the Internal as well as External		
	Examiner each		
	The Division of marks for the Project Report is as mentioned below:		
	Wording of Title 10M		
	Objectives/ Formulation including Hypothesis 20M		
	Review of Literature 20M		
	Relevance of Project to Social Needs 40M		
	Methodology/ Technique/ Procedure Adopted 70M		
	Summary/ Findings/ Conclusion	30M	
	Bibliography/ Annexure/ Foot not	es 10M	
	Total 200M		